Skip to main content

Advertisement

Log in

PEGylated Erlotinib HCl Injectable Nanoformulation for Improved Bioavailability

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The present study was undertaken to synthesize PEGylated monomethoxy poly (ethylene glycol)-poly (ε-Caprolactone) (mPEG-PCL) block copolymer and formulate Erlotinib HCl–loaded mPEG-PCL nanoparticles for enhancing the bioavailability of the drug. Using the ring-opening polymerization technique, PEGylated mPEG-PCL block copolymer was synthesized, and the structure of the copolymer was characterized using FTIR, 1H-NMR, and DSC techniques. The solvent evaporation approach was used to effectively encapsulate Erlotinib HCl within block copolymeric nanoparticles. Erlotinib HCl–loaded mPEG-PCL nanoparticles had a mean particle size of 146.5 ± 2.37 nm and a zeta potential of −27.8 ± 2.77 mV. The nanoparticles had a percent entrapment efficiency of 80.78 ± 0.09%. The in vitro drug release of Erlotinib HCl–loaded copolymeric nanoparticles showed a slow and sustained release behavior which could be maintained for up to 72 h. The Korsmeyer-Peppas fitting findings indicated that the drug release process followed a non-Fickian diffusion mechanism. The pharmacokinetic (PK) behavior of the developed nanoformulation was studied in albino Wistar rats, and the relative bioavailability of the optimized NP formulation given by intravenous route was found to be 187.33%. The PK data suggested that Erlotinib HCl–loaded mPEG-PCL copolymeric nanoparticles can dramatically alter the PK behavior of Erlotinib HCl and greatly improve the drug’s bioavailability by as much as three times when compared to the oral formulation. As a result, it was established that the block copolymeric nanoparticles have promise for the effective encapsulation of Erlotinib HCL for an injectable formulation with increased bioavailability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data are available upon request.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  2. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94.

    Article  PubMed  Google Scholar 

  3. Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer. 2014;14(8):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crino L, Weder W, Van Meerbeeck J, Felip ES. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21:103–15.

    Article  Google Scholar 

  5. Van Erp NP, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009;35(8):692–706.

    Article  PubMed  Google Scholar 

  6. Truong DH, Tran TH, Ramasamy T, Choi JY, Lee HH, Moon C, Choi HG, Yong CS, Kim JO. Development of solid self-emulsifying formulation for improving the oral bioavailability of erlotinib. AAPS PharmSciTech. 2016;17:466–73.

    Article  CAS  PubMed  Google Scholar 

  7. Cataldo VD, Gibbons DL, Pérez-Soler R, Quintás-Cardama A. Treatment of non–small-cell lung cancer with erlotinib or gefitinib. N Engl J Med. 2011;364(10):947–55.

    Article  CAS  PubMed  Google Scholar 

  8. Korgaonkar N, Yadav KS. Understanding the biology and advent of physics of cancer with perspicacity in current treatment therapy. Life Sci. 2019;239:117060.

    Article  CAS  PubMed  Google Scholar 

  9. Cohen MH, Johnson JR, Chattopadhyay S, Tang S, Justice R, Sridhara R, Pazdur R. Approval summary: erlotinib maintenance therapy of advanced/metastatic non-small cell lung cancer (NSCLC). J Oncol. 2010;15(12):1344–51.

    Article  CAS  Google Scholar 

  10. Budha NR, Frymoyer A, Smelick GS, Jin JY, Yago MR, Dresser MJ, Holden SN, Benet LZ, Ware JA. Drug absorption interactions between oral targeted anticancer agents and PPIs: is pH-dependent solubility the Achilles heel of targeted therapy? Clin Pharm Therap. 2012;92(2):203–13.

    Article  CAS  PubMed  Google Scholar 

  11. Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, Gibson KH. ZD1839 (Iressa) an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002;62(20):5749–54.

    CAS  PubMed  Google Scholar 

  12. Benet LZ. The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J Pharm Sci. 2013;102(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  13. Bruinsmann FA, Buss JH, Souto GD, Schultze E, de Cristo Soares Alves A, Seixas FK, Collares TV, Pohlmann AR, Guterres SS. 2020. Erlotinib-loaded poly (ε-Caprolactone) nanocapsules improve in vitro cytotoxicity and anticlonogenic effects on human A549 lung cancer cells. AAPS PharmSciTech. 21:1-2.

  14. Ling J, Fettner S, Lum BL, Riek M, Rakhit A. Effect of food on the pharmacokinetics of erlotinib, an orally active epidermal growth factor receptor tyrosine-kinase inhibitor, in healthy individuals. Anticancer drugs. 2008;19(2):209–16.

    Article  CAS  PubMed  Google Scholar 

  15. Reuter SE, Evans AM, Shakib S, Lungershausen Y, Francis B, Valentini G, Bacchieri A, Ubben D, Pace S. Effect of food on the pharmacokinetics of piperaquine and dihydroartemisinin. Clin Drug Investig. 2015;35:559–67.

    Article  CAS  PubMed  Google Scholar 

  16. D’Arcangelo M, Cappuzzo F. Erlotinib in the first-line treatment of non-small-cell lung cancer. Expert Rev Anticancer Ther. 2013;13(5):523–33.

    Article  PubMed  Google Scholar 

  17. Taiwade C, Fulfager A, Bhargave H, Soni G, Yadav K. Erlotinib hydrochloride novel drug delivery systems: a mini review unravelling the role of micro- and nanocarriers. Drug Deliv Lett. 2021;11(4):295–306.

    Article  CAS  Google Scholar 

  18. Devasari N, Dora CP, Singh C, Paidi SR, Kumar V, Sobhia ME, Suresh S. Inclusion complex of erlotinib with sulfobutyl ether-β-cyclodextrin: preparation, characterization, in silico, in vitro and in vivo evaluation. Carbohydr Polym. 2015;134:547–56.

    Article  CAS  PubMed  Google Scholar 

  19. Vrignaud S, Hureaux J, Wack S, Benoit JP, Saulnier P. Design, optimization and in vitro evaluation of reverse micelle-loaded lipid nanocarriers containing erlotinib hydrochloride. Int J Pharm. 2013;436(1–2):194–200.

    Google Scholar 

  20. Marslin G, Sheeba CJ, Kalaichelvan VK, Manavalan R, Neelakanta Reddy P, Franklin G. Poly (D, L-lactic-co-glycolic acid) nanoencapsulation reduces Erlotinib-induced subacute toxicity in rat. J Biomed Nanotechnol. 2009;5(5):464–71.

    Article  CAS  PubMed  Google Scholar 

  21. Jesson G, Brisander M, Andersson P, Demirbüker M, Derand H, Lennernäs H, Malmsten M. Carbon dioxide-mediated generation of hybrid nanoparticles for improved bioavailability of protein kinase inhibitors. Pharm Res. 2014;31:694–705.

    Article  CAS  PubMed  Google Scholar 

  22. Morton SW, Lee MJ, Deng ZJ, Dreaden EC, Siouve E, Shopsowitz KE, Shah NJ, Yaffe MB, Hammond PT. A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Sci Signal. 2014;7(325):44.

    Article  Google Scholar 

  23. Trummer BJ, Iyer V, Balu-Iyer SV, O’Connor R, Straubinger RM. Physicochemical properties of epidermal growth factor receptor inhibitors and development of a nanoliposomal formulation of gefitinib. J Pharm Sci. 2012;101(8):2763–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Truong DH, Le VK, Pham TT, Dao AH, Pham TP, Tran TH. Delivery of erlotinib for enhanced cancer treatment: an update review on particulate systems. Drug Deliv Sci Technol. 2020;55:101348.

    Article  CAS  Google Scholar 

  25. Mandal B, Mittal NK, Balabathula P, Thoma LA, Wood GC. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur J Pharm Sci. 2016;81:162–71.

    Article  CAS  PubMed  Google Scholar 

  26. Dora CP, Trotta F, Kushwah V, Devasari N, Singh C, Suresh S, Jain S. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr Polym. 2016;137:339–49.

    Article  CAS  PubMed  Google Scholar 

  27. Patel K, Doddapaneni R, Patki M, Sekar V, Bagde A, Singh M. Erlotinib-valproic acid liquisolid formulation: evaluating oral bioavailability and cytotoxicity in erlotinib-resistant non-small cell lung cancer cells. AAPS PharmSciTech. 2019;20:1–1.

    Article  CAS  Google Scholar 

  28. Phelps MA, Stinchcombe TE, Blachly JS, Zhao W, Schaaf LJ, Starrett SL, Wei L, Poi M, Wang D, Papp A, Aimiuwu J. Erlotinib in African Americans with advanced non–small cell lung cancer: a prospective randomized study with genetic and pharmacokinetic analyses. Clin Pharm Therap. 2014;96(2):182–91.

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Zhao M, He P, Hidalgo M, Baker SD. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res. 2007;13(12):3731–7.

    Article  CAS  PubMed  Google Scholar 

  30. Peters S, Zimmermann S, Adjei AA. Oral epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: comparative pharmacokinetics and drug–drug interactions. Cancer Treat Rev. 2014;40(8):917–26.

    Article  CAS  PubMed  Google Scholar 

  31. Babu A, Templeton AK, Munshi A, Ramesh R. Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of cancer. AAPS PharmSciTech. 2014;15:709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raut H, Jadhav C, Shetty K, Laxane N, Nijhawan HP, Rao GK, Alavala RR, Joshi G, Patro CN, Soni G, Yadav KS. Sorafenib tosylate novel drug delivery systems: implications of nanotechnology in both approved and unapproved indications. OpenNano. 2022;8:100103.

    Article  Google Scholar 

  33. In GK, Nieva J. Emerging chemotherapy agents in lung cancer: nanoparticles therapeutics for non-small cell lung cancer. Transl Lung Cancer Res. 2015;4(4):340–55.

    CAS  Google Scholar 

  34. Cucinotto I, Fiorillo L, Gualtieri S, Arbitrio M, Ciliberto D, Staropoli N, Grimaldi A, Luce A, Tassone P, Caraglia M, Tagliaferri P. 2013. Nanoparticle albumin bound Paclitaxel in the treatment of human cancer: nanodelivery reaches prime-time?. J Drug Deliv. 2013.

  35. Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS, Park K, Lee MY, Heo DS. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol. 2007;18(12):2009–14.

    Article  PubMed  Google Scholar 

  36. Autio KA, Dreicer R, Anderson J, Garcia JA, Alva A, Hart LL, Milowsky MI, Posadas EM, Ryan CJ, Graf RP, Dittamore R. Safety and efficacy of BIND-014, a docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate cancer: a phase 2 clinical trial. JAMA Oncol. 2018;4(10):1344–51.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yadav KS, Sawant KK. Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles. AAPS PharmSciTech. 2010;11:1456–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Danafar H. MPEG–PCL copolymeric nanoparticles in drug delivery systems. Cogent Med. 2016;3(1):1142411.

    Article  Google Scholar 

  39. Yadav KS, Jacob S, Sachdeva G, Sawant KK. Intracellular delivery of etoposide loaded biodegradable nanoparticles: cytotoxicity and cellular uptake studies. J Nanosci Nanotechnol. 2011;11(8):6657–67.

    Article  CAS  PubMed  Google Scholar 

  40. Peng W, Jiang XY, Zhu Y, Omari-Siaw E, Deng WW, Yu JN, Xu XM, Zhang WM. Oral delivery of capsaicin using MPEG-PCL nanoparticles. Acta Pharm Sin B. 2015;36(1):139–48.

    Article  CAS  Google Scholar 

  41. O’Reilly Beringhs A, Ndaya D, Bosire R, Kasi RM, Lu X. Stabilization and x-ray attenuation of PEGylated cholesterol/polycaprolactone-based perfluorooctyl bromide nanocapsules for CT imaging. AAPS PharmSciTech. 2021;22:1–3.

    Article  Google Scholar 

  42. Manjili HK, Ghasemi P, Malvandi H, Mousavi MS, Attari E, Danafar H. Pharmacokinetics and in vivo delivery of curcumin by copolymeric mPEG-PCL micelles. Eur J Pharm Biopharm. 2017;116:17–30.

    Article  Google Scholar 

  43. Nosrati H, Adinehvand R, Manjili HK, Rostamizadeh K, Danafar H. Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG–PCL polymersomes for inhibition of MCF-7 breast cancer cell line. Pharm Dev Technol. 2019;24(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  44. Manjili HR, Malvandi H, Mosavi MS, Danafar H. Preparation and physicochemical characterization of biodegradable mPEG-PCL core-shell micelles for delivery of artemisinin. Pharm Sci. 2016;22(4):234–43.

    Article  Google Scholar 

  45. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–22.

    Article  CAS  PubMed  Google Scholar 

  46. Guo Z, Sui J, Ma M, Hu J, Sun Y, Yang L, Fan Y, Zhang X. pH-Responsive charge switchable PEGylated ε-poly-l-lysine polymeric nanoparticles-assisted combination therapy for improving breast cancer treatment. J Control Release. 2020;326:350–64.

    Article  CAS  PubMed  Google Scholar 

  47. Soni G, Yadav KS, Gupta MK. QbD based approach for formulation development of spray dried microparticles of erlotinib hydrochloride for sustained release. J Drug Deliv Sci Technol. 2020;57:101684.

    Article  CAS  Google Scholar 

  48. Sharma A, Fish BL, Moulder JE, Medhora M, Baker JE, Mader M, Cohen EP. Safety and blood sample volume and quality of a refined retro-orbital bleeding technique in rats using a lateral approach. Lab Anim. 2014;43(2):63–6.

    Article  Google Scholar 

  49. Sahu PK, Sharma A, Rayees S, Kour G, Singh A, Khullar M, Magotra A, Paswan SK, Gupta M, Ahmad I, Roy S. Pharmacokinetic study of piperine in Wistar rats after oral and intravenous administration. Int J Drug Deliv. 2014;6(1):82.

    CAS  Google Scholar 

  50. Zhou X, Tao H, Shi KH. Development of a nanoliposomal formulation of erlotinib for lung cancer and in vitro/in vivo antitumoral evaluation. Drug Des Devel Ther. 2017:1-8.

  51. Wei W, Li S, Xu H, Zhou F, Wen Y, Song Z, Feng S, Feng R. MPEG-PCL copolymeric micelles for encapsulation of azithromycin. AAPS PharmSciTech. 2018;19:2041–7.

    Article  CAS  PubMed  Google Scholar 

  52. De Abreu LC, Todaro V, Sathler PC, da Silva LC, do Carmo FA, Costa CM, Toma HK, Castro HC, Rodrigues CR, de Sousa VP, Cabral LM. 2016. Development and characterization of nisin nanoparticles as potential alternative for the recurrent vaginal candidiasis treatment. AAPS PharmSciTech. 2016;17:1421-7.

  53. Yadav KS, Mishra DK, Deshpande A, Pethe AM. Levels of drug targeting. In: Basic fundamentals of drug delivery. Academic Press; 2019. p. 269-305

  54. Hussain Z, Khan S, Imran M, Sohail M, Shah SW, de Matas M. PEGylation: A promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv Transl Res. 2019;9:721–34.

    Article  CAS  PubMed  Google Scholar 

  55. Reich G. In vitro stability of poly (D, L-lactide) and poly (D, L-lactide)/poloxamer nanoparticles in gastrointestinal fluids. Drug Dev Ind Pharm. 1997;23(12):1191–200.

    Article  CAS  Google Scholar 

  56. Yadav KS, Kale K. High pressure homogenizer in pharmaceuticals: understanding its critical processing parameters and applications. J Pharm Innov. 2020;15:690–701.

    Article  Google Scholar 

  57. Girotra P, Singh SK, Kumar G. Development of zolmitriptan loaded PLGA/poloxamer nanoparticles for migraine using quality by design approach. Int J Biol Macromol. 2016;85:92–101.

    Article  CAS  PubMed  Google Scholar 

  58. Xie W, Zhu W, Shen Z. Synthesis, isothermal crystallization and micellization of mPEG–PCL diblock copolymers catalyzed by yttrium complex. Polym J. 2007;48(23):6791–8.

    Article  CAS  Google Scholar 

  59. Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci. 2005;24(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  60. Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–1.

    CAS  PubMed  Google Scholar 

  61. Wibowo FR, Saputra OA, Lestari WW, Koketsu M, Mukti RR, Martien R. pH-triggered drug release controlled by poly (styrene sulfonate) growth hollow mesoporous silica nanoparticles. ACS omega. 2020;5(8):4261–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.

    Article  CAS  Google Scholar 

  63. Ritger PL, Peppas NA. A simple equation for description of solute release II Fickian and anomalous release from swellable devices. J Control Release. 1987;5(1):37–42.

    Article  CAS  Google Scholar 

  64. Danyuo Y, Ani CJ, Salifu AA, Obayemi JD, Dozie-Nwachukwu S, Obanawu VO, Akpan UM, Odusanya OS, Abade-Abugre M, McBagonluri F, Soboyejo WO. Anomalous release kinetics of prodigiosin from poly-N-isopropyl-acrylamid based hydrogels for the treatment of triple negative breast cancer. Sci Rep. 2019;9(1):1–4.

    Article  CAS  Google Scholar 

  65. Yadav KS, Jacob S, Sachdeva G, Chuttani K, Mishra AK, Sawant KK. Long circulating PEGylated PLGA nanoparticles of cytarabine for targeting leukemia. J Microencapsul. 2011;28(8):729–42.

    Article  CAS  PubMed  Google Scholar 

  66. Yadav KS, Chuttani K, Mishra AK, Sawant KK. Long circulating nanoparticles of etoposide using PLGA-MPEG and PLGA-pluronic block copolymers: characterization, drug-release, blood-clearance, and biodistribution studies. Drug Dev Res. 2010;71(4):228–39.

    Article  CAS  Google Scholar 

  67. Kharwade R, More S, Suresh E, Warokar A, Mahajan N, Mahajan U. Improvement in bioavailability and pharmacokinetic characteristics of efavirenz with booster dose of ritonavir in PEGylated PAMAM G4 dendrimers. AAPS PharmSciTech. 202;23(6):177.

  68. Kale K, Fulfager A, Juvale K, Yadav KS. Long circulating polymeric nanoparticles of gemcitabine HCl using PLGA-PEG-PPG-PEG block copolymer. Int J Polym Mater. 2022:1-4.

  69. Yadav KS, Chuttani K, Mishra AK, Sawant KK. Effect of size on the biodistribution and blood clearance of etoposide-loaded PLGA nanoparticles. PDA J Pharm Sci Technol. 2011;65(2):131–9.

    CAS  PubMed  Google Scholar 

  70. Yi S, Zhang C, Hu J, Meng Y, Chen L, Yu H, Li S, Wang G, Zheng G, Qiu Z. Preparation, characterization, and in vitro pharmacodynamics and pharmacokinetics evaluation of PEGylated urolithin A liposomes. AAPS PharmSciTech. 2021;22:1–2.

    Article  CAS  Google Scholar 

  71. Torchilin VP, Trubetskoy VS. Which polymers can make nanoparticulate drug carriers –long-circulating? Adv Drug Deliv Rev. 1995;16(2–3):141–55.

    Article  CAS  Google Scholar 

  72. Yin N, Yu H, Zhang X, Lv X. 2020 Enhancement of pancreatic cancer therapy efficacy by type-1 matrix metalloproteinase-functionalized nanoparticles for the selective delivery of gemcitabine and erlotinib. Drug Des Devel Ther. 2020:4465-75.

  73. Xu H, He C, Liu Y, Jiang J, Ma T. Novel therapeutic modalities and drug delivery–erlotinib liposomes modified with galactosylated lipid: in vitro and in vivo investigations. Artif Cells Nanomed Biotechnol. 2018;46(8):1902–7.

    CAS  PubMed  Google Scholar 

  74. Shen Y, Li W. 2018 HA/HSA co-modified erlotinib–albumin nanoparticles for lung cancer treatment. Drug Des Devel Ther. 2018:2285-92.

Download references

Acknowledgements

The authors would like to thank MSN Laboratories Pvt. Ltd., Formulation division, MSN House, Hyderabad, India, for the gift sample of Erlotinib HCl.

Author information

Authors and Affiliations

Authors

Contributions

Khushwant Yadav: conceptualization, methodology, investigation, writing, reviewing, and editing final manuscript

Hardik Bhargave: methodology, investigation, writing original draft

Harsh Nijhawan: methodology, validation, writing, reviewing, and editing the manuscript

Corresponding author

Correspondence to Khushwant S. Yadav.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhargave, H., Nijhawan, H. & Yadav, K.S. PEGylated Erlotinib HCl Injectable Nanoformulation for Improved Bioavailability. AAPS PharmSciTech 24, 101 (2023). https://doi.org/10.1208/s12249-023-02560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02560-5

Keywords

Navigation