Skip to main content

Advertisement

Log in

Facile Technology for Extemporaneous Preparation of Long-Acting Injectable Microparticulate Suspensions at the Patient Side

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this study, we present an innovative and facile in situ approach for extemporaneous preparation of sterile microparticles. An amazingly simple approach, in situ technology circumvents the stability, and scale up challenges as well as sterilization issues associated with long-acting particulate systems. Monophasic preconcentrates of donepezil base (DPZ), a model drug with a biodegradable polymer poly (dl-lactide-co-glycolide) (PLGA), with stabilizer were prepared by simple solution and sterilized by filtration (0.22 micron). The sterile preconcentrates when added to aqueous dextrose solution (total volume < 3 mL) generated ready-to-inject DPZ PLGA microparticles (DPZ-PLGA-MP) with high reproducibility, entrapment efficiency (> 80%), and size ~ 80 micron. DPZ micro suspension (DPZ-MS) with high precipitation efficiency (> 90%) and size ~ 80 micron was obtained in a similar manner omitting PLGA. XRD and DSC study confirmed decreased crystallinity in the presence of PLGA. No interaction between PLGA and DPZ was evident in the FTIR study. The microparticulate dispersions exhibited good in vitro injectability when tested using the texture analyzer (force < 5 N). When evaluated using the dialysis bag method (Himedia 12–14 kDa molecular weight cutoff), both microparticulate formulations exhibited controlled release up to 1 week in vitro. Further, low burst release of ~ 10% at the end of 6 h in the ex vivo chicken muscle study proposes great promise. Our data propose the facile extemporaneous generation of microparticles as a practical and promising approach for development of long-acting injectables. This facile approach could serve as platform technology for other drug candidates.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burgess DJ, Wright JC. An introduction to long acting injections and implants. In: Wright JC, Burgess DJ, editors. Long Acting Injections and Implants [Internet]. Boston, MA: Springer US; 2012. p. 1–9. Available from: https://doi.org/10.1007/978-1-4614-0554-2_1.

  2. Wang Y, Burgess DJ. Microsphere technologies. In: Long Acting Injections and Implants [Internet]. Boston, MA: Springer US; 2012. p. 167–94. Available from: https://doi.org/10.1007/978-1-4614-0554-2_10.

  3. Lee BK, Yun Y, Park K. PLA micro- and nano-particles. Adv Drug Deliv Rev. 2016;15(107):176–91. https://doi.org/10.1016/j.addr.2016.05.020.

    Article  CAS  Google Scholar 

  4. Jalil R, Nixon JR. Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties. J Microencapsul. 1990;7(3):297–325. https://doi.org/10.3109/02652049009021842.

    Article  CAS  PubMed  Google Scholar 

  5. Baras B, Benoit MA, Gillard J. Parameters influencing the antigen release from spray-dried poly (DL-lactide) microparticles. Int J Pharm. 2000;200(1):133–45. https://doi.org/10.1016/S0378-5173(00)00363-X.

    Article  CAS  PubMed  Google Scholar 

  6. Lee WY, Asadujjaman M, Jee JP. Long acting injectable formulations: the state of the arts and challenges of poly (lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal. J Pharm Investig. 2019;49(4):459–76. https://doi.org/10.1007/s40005-019-00449-9.

    Article  CAS  Google Scholar 

  7. Hasanain F, Guenther K, Mullett WM, Craven E. Gamma sterilization of pharmaceuticals—a review of the irradiation of excipients, active pharmaceutical ingredients, and final drug product formulations. PDA J Pharm Sci Technol. 2014;68(2):113–37. https://doi.org/10.5731/pdajpst.2014.00955.

    Article  CAS  PubMed  Google Scholar 

  8. Lee JS, Chae GS, Khang G, Kim MS, Cho SH, Lee HB. The effect of gamma irradiation on PLGA and release behavior of BCNU from PLGA wafer. Macromol Res. 2003;11(5):352–6. https://doi.org/10.1007/BF03218376.

    Article  CAS  Google Scholar 

  9. Bodmeier R. Multiphase system. EP0996426A1, 2000 May 03. https://patents.google.com/patent/EP0996426A1/en.

  10. Kranz H, Bodmeier R. A biodegradable in situ forming system for controlled drug release. Pharm Sci Suppl. 1998;1:414.

    Google Scholar 

  11. Kranz H, Brazeau GA, Napaporn J, Martin RL, Millard W, Bodmeier R. Myotoxicity studies of injectable biodegradable in-situ forming drug delivery systems. Int J Pharm. 2001;212(1):11–8. https://doi.org/10.1016/S0378-5173(00)00568-8.

    Article  CAS  PubMed  Google Scholar 

  12. Kranz H, Bodmeier R. A novel in situ forming drug delivery system for controlled parenteral drug delivery. Int J Pharm. 2007;332(1–2):107–14. https://doi.org/10.1016/j.ijpharm.2006.09.033.

    Article  CAS  PubMed  Google Scholar 

  13. Körber M, Bodmeier R. Development of an in situ forming PLGA drug delivery system: I. Characterization of a non-aqueous protein precipitation. European Journal of Pharmaceutical Sciences. 2008 Nov 15;35(4):283–292. https://doi.org/10.1016/j.ejps.2008.07.007.

  14. Luan X, Bodmeier R. In situ forming microparticle system for controlled delivery of leuprolide acetate: influence of the formulation and processing parameters. Eur J Pharm Sci. 2006;27(2–3):143–9. https://doi.org/10.1016/j.ejps.2005.09.002.

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Chen F, Hu C, He L, Yan K, Zhou L, et al. Optimized preparation of in situ forming microparticles for the parenteral delivery of vinpocetine. Chem Pharm Bull. 2008;56(6):796–801. https://doi.org/10.1248/cpb.56.796.

    Article  CAS  Google Scholar 

  16. Haider M, Elsayed I, Ahmed IS, Fares AR. In situ-forming microparticles for controlled release of rivastigmine: in vitro optimization and in vivo evaluation. Pharmaceuticals. 2021;14(1):66. https://doi.org/10.3390/ph14010066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parent M, Boudier A, Perrin J, Vigneron C, Maincent P, Violle N, et al. In situ microparticles loaded with s-nitrosoglutathione protect from stroke. PLoS ONE. 2015 Dec 8;10(12):e0144659. https://doi.org/10.1371/journal.pone.0144659.

  18. D’Souza AA, Yevate SV, Bandivdekar A, Devarajan PV. In situ polyethylene sebacate particulate carriers as an alternative to Freund’s adjuvant for delivery of a contraceptive peptide vaccine—a feasibility study. Int J Pharm. 2015;496(2):601–8. https://doi.org/10.1016/j.ijpharm.2015.10.070.

    Article  CAS  PubMed  Google Scholar 

  19. Kapse SV, Gaikwad RV, Samad A, Devarajan PV. Self nanoprecipitating preconcentrate of tamoxifen citrate for enhanced bioavailability. Int J Pharm. 2012;429(1):104–12. https://doi.org/10.1016/j.ijpharm.2012.02.042.

    Article  CAS  PubMed  Google Scholar 

  20. John R, Dalal B, Shankarkumar A, Devarajan PV. Innovative betulin nanosuspension exhibits enhanced anticancer activity in a triple negative breast cancer cell line and zebrafish angiogenesis model. International Journal of Pharmaceutics. 2021 May 1;600:120511. https://doi.org/10.1016/j.ijpharm.2021.120511.

  21. Joshi VM, Devarajan PV. Receptor-mediated hepatocyte-targeted delivery of primaquine phosphate nanocarboplex using a carbohydrate ligand. Drug Deliv Transl Res. 2014;4(4):353–64. https://doi.org/10.1007/s13346-014-0200-4.

    Article  CAS  PubMed  Google Scholar 

  22. Jindal AB, Bachhav SS, Devarajan PV. In situ hybrid nano drug delivery system (IHN-DDS) of antiretroviral drug for simultaneous targeting to multiple viral reservoirs: An in vivo proof of concept. Int J Pharm. 2017;521(1–2):196–203. https://doi.org/10.1016/j.ijpharm.2017.02.024.

    Article  CAS  PubMed  Google Scholar 

  23. Jahagirdar PS, Gupta PK, Kulkarni SP, Devarajan PV. Polymeric curcumin nanoparticles by a facile in situ method for macrophage targeted delivery. Bioengineering & Translational Medicine. 2019;4(1):141–51. https://doi.org/10.1002/btm2.10112.

    Article  CAS  Google Scholar 

  24. Jindal AB, Devarajan PV. Asymmetric lipid–polymer particles (LIPOMER) by modified nanoprecipitation: role of non-solvent composition. Int J Pharm. 2015;489(1):246–51. https://doi.org/10.1016/j.ijpharm.2015.04.073.

    Article  CAS  PubMed  Google Scholar 

  25. Van Krevelen DW, Te Nijenhuis K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier; 2009.

  26. Ferrell WH, Kushner DI, Hickner MA. Investigation of polymer–solvent interactions in poly (styrene sulfonate) thin films. J Polym Sci, Part B: Polym Phys. 2017;55(18):1365–72. https://doi.org/10.1002/polb.24383.

    Article  CAS  Google Scholar 

  27. Liu Q, Zhang H, Zhou G, Xie S, Zou H, Yu Y, et al. In vitro and in vivo study of thymosin alpha1 biodegradable in situ forming poly (lactide-co-glycolide) implants. Int J Pharm. 2010;397(1–2):122–9. https://doi.org/10.1016/j.ijpharm.2010.07.015.

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed TA, Ibrahim HM, Ibrahim F, Samy AM, Kaseem A, Nutan MT, et al. Development of biodegradable in situ implant and microparticle injectable formulations for sustained delivery of haloperidol. J Pharm Sci. 2012;101(10):3753–62. https://doi.org/10.1002/jps.23250.

    Article  CAS  PubMed  Google Scholar 

  29. D’Souza SS, DeLuca PP. Development of a dialysis in vitro release method for biodegradable microspheres. AAPS pharmscitech. 2005;6(2):E323-E328. https://doi.org/10.1208/pt060242.

  30. Kamali H, Khodaverdi E, Hadizadeh F, Mohajeri SA, Kamali Y, Jafarian AH. In-vitro, ex-vivo, and in-vivo release evaluation of in situ forming buprenorphine implants using mixture of PLGA copolymers and additives. Int J Polym Mater Polym Biomater. 2019;68(16):965–77. https://doi.org/10.1080/00914037.2018.1525541.

    Article  CAS  Google Scholar 

  31. Dawre S, Pathak S, Sharma S, Devarajan PV. Enhanced antimalalarial activity of a prolonged release in situ gel of arteether–lumefantrine in a murine model. Eur J Pharm Biopharm. 2018;1(123):95–107. https://doi.org/10.1016/j.ejpb.2017.11.002.

    Article  CAS  Google Scholar 

  32. Stainmesse S, Fessi H, Devissaguet J-P, Puisieux F, Theis C. Process for preparing dispersible colloidal systems of a substance in nanoparticulate form. US5133908A, 1992 July 28. https://patents.google.com/patent/US5133908A/en.

  33. Joshi HA, Patwardhan RS, Sharma D, Sandur SK, Devarajan PV. Pre-clinical evaluation of an innovative oral nano-formulation of baicalein for modulation of radiation responses. International Journal of Pharmaceutics. 2021 Feb 15;595:120181. https://doi.org/10.1016/j.ijpharm.2020.120181.

  34. Badkar AV, Gandhi RB, Davis SP, LaBarre MJ. Subcutaneous delivery of high-dose/volume biologics: current status and prospect for future advancements. DDDT. 2021;15:159–70. https://doi.org/10.2147/DDDT.S287323.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hancock BC, York P, Rowe RC. The use of solubility parameters in pharmaceutical dosage form design. Int J Pharm. 1997;148(1):1–21. https://doi.org/10.1016/S0378-5173(96)04828-4.

    Article  CAS  Google Scholar 

  36. Jain A, Kunduru KR, Basu A, Mizrahi B, Domb AJ, Khan W. Injectable formulations of poly(lactic acid) and its copolymers in clinical use. Adv Drug Deliv Rev. 2016;15(107):213–27. https://doi.org/10.1016/j.addr.2016.07.002.

    Article  CAS  Google Scholar 

  37. Lancheros R, Guerrero CA, Godoy-Silva RD. Improvement of N-acetylcysteine loaded in PLGA nanoparticles by nanoprecipitation method. Journal of Nanotechnology. 2018 Jan 1;2018:https://doi.org/10.1155/2018/3620373.

  38. Legrand P, Lesieur S, Bochot A, Gref R, Raatjes W, Barratt G, et al. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int J Pharm. 2007;344(1–2):33–43. https://doi.org/10.1016/j.ijpharm.2007.05.054.

    Article  CAS  PubMed  Google Scholar 

  39. Lepeltier E, Bourgaux C, Couvreur P. Nanoprecipitation and the “Ouzo effect”: application to drug delivery devices. Adv Drug Deliv Rev. 2014;1(71):86–97. https://doi.org/10.1016/j.addr.2013.12.009.

    Article  CAS  Google Scholar 

  40. Galindo-Rodriguez S, Allémann E, Fessi H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res. 2004;21(8):1428–39. https://doi.org/10.1023/B:PHAM.0000036917.75634.be.

    Article  CAS  PubMed  Google Scholar 

  41. Rivas CJ, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA, et al. Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharm. 2017;532(1):66–81. https://doi.org/10.1016/j.ijpharm.2017.08.064.

    Article  CAS  Google Scholar 

  42. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm. 2011;415(1–2):34–52. https://doi.org/10.1016/j.ijpharm.2011.05.049.

    Article  CAS  PubMed  Google Scholar 

  43. Acharya G, Shin CS, Vedantham K, McDermott M, Rish T, Hansen K, et al. A study of drug release from homogeneous PLGA microstructures. J Control Release. 2010;146(2):201–6. https://doi.org/10.1016/j.jconrel.2010.03.024.

    Article  CAS  PubMed  Google Scholar 

  44. Li XS, Wang JX, Shen ZG, Zhang PY, Chen JF, Yun J. Preparation of uniform prednisolone microcrystals by a controlled microprecipitation method. Int J Pharm. 2007;342(1–2):26–32. https://doi.org/10.1016/j.ijpharm.2007.04.025.

    Article  CAS  PubMed  Google Scholar 

  45. Homayouni A, Sadeghi F, Varshosaz J, Garekani HA, Nokhodchi AHomayouni. Promising dissolution enhancement effect of soluplus on crystallized celecoxib obtained through antisolvent precipitation and high pressure homogenization techniques. Colloids Surf B. 2014 Oct 1;122:591–600. https://doi.org/10.1016/j.colsurfb.2014.07.037.

  46. Guo W, Quan P, Fang L, Cun D, Yang M. Sustained release donepezil loaded PLGA microspheres for injection: preparation, in vitro and in vivo study. Asian J Pharm Sci. 2015;10(5):405–14. https://doi.org/10.1016/j.ajps.2015.06.001.

    Article  Google Scholar 

  47. Mittapelly N, Thalla M, Pandey G, Banala VT, Sharma S, Arya A, et al. Long acting ionically paired embonate based nanocrystals of donepezil for the treatment of Alzheimer’s disease: a proof of concept study. Pharm Res. 2017;34(11):2322–35. https://doi.org/10.1007/s11095-017-2240-1.

    Article  CAS  PubMed  Google Scholar 

  48. Krayukhina E, Fukuhara A, Uchiyama S. Assessment of the injection performance of a tapered needle for use in prefilled biopharmaceutical products. J Pharm Sci. 2020;109(1):515–23. https://doi.org/10.1016/j.xphs.2019.10.033.

    Article  CAS  PubMed  Google Scholar 

  49. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35. https://doi.org/10.1016/0378-5173(83)90064-9.

    Article  CAS  Google Scholar 

  50. Wang X, Burgess DJ. Drug release from in situ forming implants and advances in release testing. Adv Drug Deliv Rev. 2021;1(178): 113912.

    Article  Google Scholar 

Download references

Funding

The authors are thankful to the Government of India, Department of Science & Technology (DST) and Amaterasu Lifesciences LLP, Mumbai, for the Prime Minister Fellowship and financial support.

Author information

Authors and Affiliations

Authors

Contributions

Sukhada S. Shevade: investigation, data curation, writing—first draft; Maharukh T. Rustomjee: conceptualization, supervision, project administration, resources. Padma V. Devarajan: conceptualization, supervision, validation, resources, writing—review and editing of final draft.

Corresponding author

Correspondence to Padma V. Devarajan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 202 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevade, S.S., Rustomjee, M.T. & Devarajan, P.V. Facile Technology for Extemporaneous Preparation of Long-Acting Injectable Microparticulate Suspensions at the Patient Side. AAPS PharmSciTech 24, 61 (2023). https://doi.org/10.1208/s12249-023-02519-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02519-6

Keywords

Navigation