Skip to main content

Advertisement

Log in

Synthesis of Submicrometric Chitosan Particles Loaded with Calcium Phosphate for Biomedical Applications

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Chitosan particles loaded with dibasic calcium phosphate anhydrous (DCPA) is a promising strategy for combining antimicrobial and osteoconduction properties in regenerative medicine. However, mostly micrometer-sized particles have been reported in the literature, limiting their use and reducing their effect in the biomedical field. We have recently overcome this limitation by developing submicrometer-sized particles with electrospray technique. The objective of this study was to understand how the process parameters control the size and properties of submicrometer chitosan particles loaded with DCPA. Solutions of 10 mg/mL chitosan and 2.5 mg/mL DCPA in a 90% acetic acid were electrosprayed under three distinct flow rate conditions: 0.2, 0.5, and 1.0 mL/h. The particles were crosslinked in a glutaraldehyde atmosphere and characterized in terms of their morphology, inorganic content, zeta potential, and minimum inhibitory concentration (MIC) against S. mutans. All conditions showed particles with two similar morphologies: one small-sized with a spherical shape and another larger-sized with a bi-concave shape. All generated a broad particle size distribution, with a similar mean size of ~ 235 nm. The addition of DCPA decreased the zeta potential for all the samples, but it was above 30 mV, indicating a low aggregation potential. The lower flow rate showed the worst efficacy for DCPA incorporation. Antimicrobial activity was greater in chitosan/DCPA particles with flow rate of 0.5 mL/h. It can be concluded that the flow rate of 0.5 mL/h presents the best compromise solution in terms of morphology, zeta potential, MIC, and inorganic content.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Demarco FF, Correa MB, Cenci MS, Moraes RR, Opdam NJ. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater. 2012;28(1):87–101.

    Article  CAS  PubMed  Google Scholar 

  2. Mouhyi J, Dohan Ehrenfest DM, Albrektsson T. The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin Implant Dent Relat Res. 2012;14(2):170–83.

    Article  PubMed  Google Scholar 

  3. Zandi H, Petronijevic N, Mdala I, Kristoffersen AK, Enersen M, Rocas IN, Siqueira-Jr J:F, Orstavik D. Outcome of endodontic retreatment using 2 root canal irrigants and influence of infection on healing as determined by a molecular method: a randomized clinical trial. J Endod. 2019;45(9):1089–98 e5.

    Article  PubMed  Google Scholar 

  4. Ahlfeld T, Doberenz F, Kilian D, Vater C, Korn P, Lauer G, Lode A, Gelinsky M. Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink. Biofabrication. 2018;10(4):045002:1–33.

    Google Scholar 

  5. Anusavice KJ, Zhang NZ, Shen C. Controlled release of chlorhexidine from UDMA-TEGDMA resin. J Dent Res. 2006;85(10):950–4.

    Article  CAS  PubMed  Google Scholar 

  6. Rathke A, Staude R, Muche R, Haller B. Antibacterial activity of a triclosan-containing resin composite matrix against three common oral bacteria. J Mater Sci Mater Med. 2010;21(11):2971–7.

    Article  CAS  PubMed  Google Scholar 

  7. Khvostenko D, Hilton TJ, Ferracane JL, Mitchell JC, Kruzic JJ. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent Mater. 2016;32(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  8. Khvostenko D, Mitchell JC, Hilton TJ, Ferracane JL, Kruzic JJ. Mechanical performance of novel bioactive glass containing dental restorative composites. Dent Mater. 2013;29(11):1139–48.

    Article  CAS  PubMed  Google Scholar 

  9. Buruiana T, Melinte V, Popa ID, Buruiana EC. New urethane oligodimethacrylates with quaternary alkylammonium for formulating dental composites. J Mater Sci Mater Med. 2014;25(4):1183–94.

    Article  CAS  PubMed  Google Scholar 

  10. Imazato S, Ma S, Chen JH, Xu HH. Therapeutic polymers for dental adhesives: loading resins with bio-active components. Dent Mater. 2014;30(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  11. Liang X, Soderling E, Liu F, He J, Lassila LV, Vallittu PK. Optimizing the concentration of quaternary ammonium dimethacrylate monomer in bis-GMA/TEGDMA dental resin system for antibacterial activity and mechanical properties. J Mater Sci Mater Med. 2014;25(5):1387–93.

    Article  CAS  PubMed  Google Scholar 

  12. Li F, Wang P, Weir MD, Fouad AF, Xu HH. Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model. Acta Biomater. 2014;10(6):2804–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim J-S, Shin D-H. Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin. Restor Dent Endod. 2013;38(1):36–42.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Costa EM, Silva S, Veiga M, Tavaria FK, Pintado MM. A review of chitosan’s effect on oral biofilms: perspectives from the tube to the mouth. J Oral Biosci. 2017;59(4):205–10.

    Article  Google Scholar 

  15. Petri DF, Donega J, Benassi AM, Bocangel JA. Preliminary study on chitosan modified glass ionomer restoratives. Dent Mater. 2007;23(8):1004–10.

    Article  CAS  PubMed  Google Scholar 

  16. Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983–90.

    Article  PubMed  Google Scholar 

  17. Yan N, Chen X. Don't waste seafood waste. Nature. 2015;524(7564):155–7.

    Article  CAS  PubMed  Google Scholar 

  18. Skrtic D, Antonucci JM, Eanes ED. Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites. Dent Mater. 1996;12(5):295–301.

    Article  CAS  PubMed  Google Scholar 

  19. Chiari MD, Rodrigues MC, Xavier TA, de Souza EM, Arana-Chavez VE, Braga RR. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles. Dent Mater. 2015;31(6):726–33.

    Article  CAS  PubMed  Google Scholar 

  20. Xu HH, Moreau JL. Dental glass-reinforced composite for caries inhibition: calcium phosphate ion release and mechanical properties. J Biomed Mater Res B Appl Biomater. 2010;92(2):332–40.

    PubMed  PubMed Central  Google Scholar 

  21. Jayasuriya AC, Bhat A. Optimization of scaled-up chitosan microparticles for bone regeneration. Biomed Mater. 2009;4(5):e055006.1-8.

    Article  Google Scholar 

  22. Jayasuriya AC, Bhat A. Fabrication and characterization of novel hybrid organic/inorganic microparticles to apply in bone regeneration. J Biomed Mater Res A. 2010;93(4):1280–8.

    PubMed  Google Scholar 

  23. Yunoki A, Tsuchiya E, Fukui Y, Fujii A, Maruyama T. Preparation of inorganic/organic polymer hybrid microcapsules with high encapsulation efficiency by an electrospray technique. ACS Appl Mater Interfaces. 2014;6(15):11973–9.

    Article  CAS  PubMed  Google Scholar 

  24. Randolph LD, Palin WM, Leloup G, Leprince JG. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent Mater. 2016;32(12):1586–99.

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka CB, Lopes DP, Kikuchi LNT, Moreira MS, Catalani LH, Braga RR, Kruzic JJ, Gonçalves F. Development of novel dental restorative composites with dibasic calcium phosphate loaded chitosan fillers. Dent Mater. 2020;36(4):551–9.

    Article  CAS  PubMed  Google Scholar 

  26. Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter. 2013;3(3).

  27. Thien DVH, Hsiao SW, Ho MH. Synthesis of electrosprayed chitosan nanoparticles for drug sustained release. Nano LIFE. 2012;2(1):1–11.

    Article  Google Scholar 

  28. Lim SS, Chai CY, Loh HS. In vitro evaluation of osteoblast adhesion, proliferation and differentiation on chitosan-TiO. Mater Sci Eng C Mater Biol Appl. 2017;76:144–52.

    Article  CAS  PubMed  Google Scholar 

  29. Aydınoğlu A, Yoruç ABH. Effects of silane-modified fillers on properties of dental composite resin. Mater Sci Eng C Mater Biol Appl. 2017;79:382–9.

    Article  PubMed  Google Scholar 

  30. CLSI. Clinical and laboratory standards institute standards development policies and process 2013.

  31. Hazehara-Kunitomo Y, Hara ES, Ono M, Aung KT, Komi K, Pham HT, Akiyama K, Okada M, Oohashi T, Matsumoto T, Kuboki T. Acidic pre-conditioning enhances the stem cell phenotype of human bone marrow stem/progenitor cells. Int J Mol Sci. 2019;20(5):e1097. 1-10.

    Article  Google Scholar 

  32. Gonsalves AA, Araújo CRM, Soares NA, Goulart MOF, Abreu FC. Diferentes estratégias para a reticulação de quitosana. Quim Nova. 2011;34(7):1215–23.

    Article  CAS  Google Scholar 

  33. Mendes AA, Oliveria PC, Castro HF, Giordano RLC. Aplicação de quitosana como suporte para a imobilização de enzimas de interesse industrial. Quim Nova. 2011;34(5):831–40.

    CAS  Google Scholar 

  34. Odaci D, Timur S, Telefoncu A. A microbial biosensor based on bacterial cells immobilized on chitosan matrix. Bioelectrochemistry. 2009;75(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  35. Gomez-Mascaraque LG, Sanchez G, Lopez-Rubio A. Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds. Carbohydr Polym. 2016;150:121–30.

    Article  CAS  PubMed  Google Scholar 

  36. Kawakami K, Sumitani C, Yoshihashi Y, Yonemochi E, Terada K. Investigation of the dynamic process during spray-drying to improve aerodynamic performance of inhalation particles. Int J Pharm. 2010;390(2):250–9.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang S, Kawakami K. One-step preparation of chitosan solid nanoparticles by electrospray deposition. Int J Pharm. 2010;397(1-2):211–7.

    Article  CAS  PubMed  Google Scholar 

  38. Songsurang K, Praphairaksit N, Siraleartmukul K, Muangsin N. Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Arch Pharm Res. 2011;34(4):583–92.

    Article  CAS  PubMed  Google Scholar 

  39. Klein, M. P.; Nunes, M. R.; Rodrigues, R. C.; Benvenutti, E. V; Costa, T. M. H.; Hertz, P. F.; Ninow, J. L. Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomacromolecules 2012; 13(8):2456–2464. https://doi.org/10.1021/bm3006984.

  40. Michailidou G, Ainali NM, Xanthopoulou E, Nanaki S, Kostoglou M, Koukaras EN, Bikiaris DN. Effect of poly(vinyl alcohol) on nanoencapsulation of budesonide in chitosan nanoparticles via ionic gelation and its improved bioavailability. Polymers (Basel). 2020;12(5):1101. https://doi.org/10.3390/polym12051101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shetta A, Kegere J, Mamdouh W. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int. J. Biol. Macromol. 2019;126:731–42. https://doi.org/10.1016/j.ijbiomac.2018.12.161.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou H, Yang L, Gbureck U, Bhaduri SB, Sikder P. Monetite, An important calcium phosphate compound–Its synthesis, properties and applications in orthopedics. Acta Biomater. 2021;127:41–55. https://doi.org/10.1016/j.actbio.2021.03.050.

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Ye J, Wang Y. Hydration mechanism of a novel PCCP + DCPA cement system. J Mater Sci Mater Med. 2007;19(2):813–6. https://doi.org/10.1007/s10856-006-0029-6.

    Article  CAS  PubMed  Google Scholar 

  44. Clogston JD, Patri AK. Zeta potential measurement. Methods Mol Biol. 2011;697:63–70.

    Article  CAS  PubMed  Google Scholar 

  45. Salopek B, Krasic D, Filipovic S. Measurement and application of zeta-potential. Rudarsko-geoloiko-naftni zbornik. 1992;4:147–51.

    Google Scholar 

  46. Alqahtani FY, Aleanizy FS, Tahir EE, Alquadeib BT, Alsarra IA, Alanazi JS, Abdelhady HG. Preparation, characterization, and antibacterial activity of diclofenac-loaded chitosan nanoparticles. Saudi Pharm J. 2019;27(1):82–7.

    Article  PubMed  Google Scholar 

  47. Wiarachai O, Thongchul N, Kiatkamjornwong S, Hoven VP. Surface-quaternized chitosan particles as an alternative and effective organic antibacterial material. Colloids Surf B Biointerfaces. 2012;92:121–9.

    Article  CAS  PubMed  Google Scholar 

  48. Stefano C, Gianguzza A, Piazzese D, Sl S. Speciation of chitosan–phosphate and chitosan–nucleotide systems in NaCI aqueoussolution. Chemical Speciation & Bioavailability. 2015;22(2):99–107.

    Article  Google Scholar 

  49. Goy RC, Britto D, Assis OBG. Review of the antimicrobial activity of chitosan. Polímeros: Ciência e Tecnologia. 2009;19(3):241–7.

    Article  CAS  Google Scholar 

  50. Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144(1):51–63.

    Article  CAS  PubMed  Google Scholar 

  51. Perinelli DR, Fagioli L, Campana R, Lam JKW, Baffone W, Palmieri GF, Casettari L, Bonacucina G. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci. 2018;117:8–20.

    Article  CAS  PubMed  Google Scholar 

  52. Davey KR. Modelling the combined effect of temperature and pH on the rate coefficient for bacterial growth. Int J Food Microbiol. 1994;23(3-4):295–303.

    Article  CAS  PubMed  Google Scholar 

  53. Castillo A, Rubiano S, Gutiérrez J, Hermoso A, Liébana J. Post-pH effect in oral streptococci. Clin Microbiol Infect. 2000;6(3):142–6.

    Article  CAS  PubMed  Google Scholar 

  54. Sarwar A, Katas H, Zin NM. Antibacterial effects of chitosan–tripolyphosphate nanoparticles: impact of particle size molecular weight. J Nanopart Res. 2014; 16:e2517.1-14.

Download references

Acknowledgements

The authors thank the São Paulo Research Foundation, Brazil (FAPESP, 2016/13114-2), along with the FAPESP-UNSW Joint Research Grant Program, Brazil-Australia (FAPESP, 2017/50290-6) for funding this project.

Author information

Authors and Affiliations

Authors

Contributions

Lopes DP – chitosan purification, particles synthesis, TGA and drafting of the manuscript

Freitas SEM – MIC analysis, and drafting of the manuscript

Tanaka CB - conception, data interpretation and drafting of the manuscript

Delechiave G – zeta potential, DSC, and drafting of the manuscript

Kikuchi LNT – ninhydrin assay, FTIR and drafting of the manuscript

Braga RR - conception, data interpretation and reviewing of the manuscript

Kruzic JJ - conception, data interpretation and reviewing of the manuscript

Boaro LCC – MIC analysis, data interpretation and reviewing of the manuscript

Catalani LH - conception, data interpretation and reviewing of the manuscript

Moreira SM – ICO-OES, data interpretation and reviewing of the manuscript

Gonçalves F – MEV, statistical analysis conception, data interpretation and reviewing of the manuscript

Corresponding author

Correspondence to Leticia Cristina Cidreira Boaro.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, D.P., Freitas, S.R.M., Tanaka, C.B. et al. Synthesis of Submicrometric Chitosan Particles Loaded with Calcium Phosphate for Biomedical Applications. AAPS PharmSciTech 24, 56 (2023). https://doi.org/10.1208/s12249-023-02517-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02517-8

Keywords

Navigation