Skip to main content

Advertisement

Log in

Andrographolide-Soya-L-α-Phosphatidyl Choline Complex Augmented Solubility and Drug Delivery in Leishmania donovani, a Causative Agent for Cutaneous and Visceral Leishmaniasis

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The utility of andrographolide (AN) in visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL) is limited owing to poor solubility, hindered permeation, and unstable structure under physiological conditions. The present study mainly focuses on synthesizing of andrographolide-Soya-L-α-phosphatidyl choline (ANSPC) complex in ethanol and its characterization using various spectral and analytical techniques. Results from FT-IR, 1H NMR, ROSEY, and in silico docking techniques suggest ANSPC complex formation due to inter-molecular interaction between the hydrophilic head of SPC and hydroxyl group of AN present at 24th position. ANSPC complex demonstrated the solubility of 113.93 ± 6.66 μg/mL significantly (P < 0.05) greater than 6.39 ± 0.47 μg/mL of AN. The particle size of ANSPC complex was found to be 182.2 ± 2.69 nm. The IC50 value of AN suspension (PBS, pH ~ 7.4) at 24, 48, and 72 h against Leishmania donovani (L. donovani) was noticed to be 32.76 ± 4.53, 20.87 ± 2.37, and 17.71 ± 3.06 μM/mL, respectively. Moreover, augmented aqueous solubility of ANSPC complex led to significant (P < 0.05) reduction in IC50 value, i.e., 25.02 ± 4.35, 11.31 ± 0.60, and 8.33 ± 2.71 μM/mL at 24, 48, and 72 h, respectively. The IC50 values for miltefosine were noted to be 9.84 ± 2.65, 12.13 ± 7.26, and 6.56 ± 0.61 μM/mL at similar time periods. Moreover, ANSPC complex demonstrated augmented cellular uptake at 24 h as compared to 6 h in L. donovani. We suppose that submicron size and phospholipid-mediated complexation might have endorsed the permeation of ANSPC complex across the plasma membrane of L. donovani parasite by transport mechanisms such as P-type ATPase. ANSPC complex warrants further in-depth in vivo studies under a set of stringent parameters for translating the product into a clinically viable form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cecílio P, Cordeiro-da-Silva A, Oliveira F. Sand flies: basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun Biol. 2022;5:1–12. https://doi.org/10.1038/s42003-022-03240-z.

    Article  Google Scholar 

  2. Arenas R, Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J. Leishmaniasis: a review. F1000Res. 2017;6:750. https://doi.org/10.12688/F1000RESEARCH.11120.1.

    Article  Google Scholar 

  3. Okwor I, Uzonna J. Social and economic burden of human leishmaniasis. Am J Trop Med Hyg. 2016;94:489–93. https://doi.org/10.4269/AJTMH.15-0408.

    Article  Google Scholar 

  4. Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. Lancet Infect Dis. 2007;7:581–96. https://doi.org/10.1016/S1473-3099(07)70209-8.

    Article  Google Scholar 

  5. Mann S, Frasca K, Scherrer S, Henao-Martínez AF, Newman S, Ramanan P, et al. A review of leishmaniasis: current knowledge and future directions. Curr Trop Med Rep. 2021;8(2):121–32. https://doi.org/10.1007/s40475-021-00232-7.

    Article  Google Scholar 

  6. Scorza BM, Carvalho EM, Wilson ME, Jackson C, Bustin SA. Molecular sciences cutaneous manifestations of human and murine leishmaniasis. Int J Mol Sci. 2017;18(6):1296. https://doi.org/10.3390/ijms18061296.

    Article  CAS  Google Scholar 

  7. AzimID M, Ahmad KhanID S, UllahID S, UllahID S, IshtiaqAnjumID S, Pakhtunkhwa K. Therapeutic advances in the topical treatment of cutaneous leishmaniasis: a review. PLoS Negl Trop Dis. 2021;15(3):9099. https://doi.org/10.1371/journal.pntd.0009099.

    Article  CAS  Google Scholar 

  8. Zhang K, Beverley SM. Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol. 2010;170:55–64. https://doi.org/10.1016/J.MOLBIOPARA.2009.12.004.

    Article  CAS  Google Scholar 

  9. Moitra S, Pawlowic MC, Hsu F fu, Zhang K. Phosphatidylcholine synthesis through cholinephosphate cytidylyltransferase is dispensable in Leishmania major. Sci Rep. 2019;9(1):1–13. https://doi.org/10.1038/S41598-019-44086-6.

    Article  CAS  Google Scholar 

  10. Martínez-Salazar B, Pereira VC, Hauyon-La-torre Y, Khamesipour A, Tacchini-Cottier F. Evaluation of a new topical treatment for the control of cutaneous leishmaniasis. Microorganisms. 2020;8(11):1803. https://doi.org/10.3390/microorganisms8111803.

    Article  CAS  Google Scholar 

  11. Shukla R, Mourya A, Handa M, Ujjwal RR. Role of nanomedicines in neglected tropical diseases. Nanopharm Adv Deliv Syst. 2021:407–46. https://doi.org/10.1002/9781119711698.CH18.

  12. Neal RA, Allen S, Mccoy N, Olliaro P, Croft SL. The sensitivity of Leishmania species to aminosidine. J Antimicrob Chemother. 1995;35(5):577–84. https://doi.org/10.1093/jac/35.5.577.

    Article  CAS  Google Scholar 

  13. El-On J, Hamburger AD. Topical treatment of New and Old World cutaneous leishmaniasis in experimental animals. Trans R Soc Trop Med Hyg. 1987;81(5):734–7. https://doi.org/10.1016/0035-9203(87)90011-3.

    Article  CAS  Google Scholar 

  14. Hendrickx S, Reis-Cunha JL, Forrester S, Jeffares DC, Caljon G. Experimental selection of paromomycin resistance in Leishmania donovani amastigotes induces variable genomic polymorphisms. Microorganisms. 2021;9(8):1546. https://doi.org/10.3390/MICROORGANISMS9081546.

    Article  CAS  Google Scholar 

  15. Vacas A, Fernández-Rubio C, Algarabel M, Peña-Guerrero J, Larrea E, Formiga FR, et al. The novel serine/threonine protein kinase LmjF.22.0810 from Leishmania major may be involved in the resistance to drugs such as paromomycin. Biomolecules. 2019;9(11):723. https://doi.org/10.3390/BIOM9110723.

    Article  CAS  Google Scholar 

  16. Mondal S, Roy P, Das S, Halder A, Mukherjee A, Bera T. In vitro susceptibilities of wild and drug resistant Leishmania donovani amastigote stages to andrographolide nanoparticle: role of vitamin E derivative TPGS for nanoparticle efficacy. PLoS One. 2013;8:e81492. https://doi.org/10.1371/JOURNAL.PONE.0081492.

    Article  Google Scholar 

  17. Roy P, Das S, Bera T, Mondol S, Mukherjee A. International Journal of Nanomedicine Dovepress Andrographolide nanoparticles in leishmaniasis: characterization and in vitro evaluations. Int J Nanomed. 2010;5:1113. https://doi.org/10.2147/IJN.S14787.

    Article  CAS  Google Scholar 

  18. Das S, Halder A, Mandal S, Mazumder MAJ, Bera T, Mukherjee A, et al. Andrographolide engineered gold nanoparticle to overcome drug resistant visceral leishmaniasis. Artif Cells Nanomed Biotechnol. 2018;46:751–62. https://doi.org/10.1080/21691401.2018.1435549.

    Article  CAS  Google Scholar 

  19. Singh SC, Khatri DK, Singh K, Kanchupalli VK, Madan J, Singh SB, et al. Molecular encapsulation of andrographolide in 2-hydroxypropyl-β-cyclodextrin cavity: synthesis, characterization, pharmacokinetic and in vitro antiviral activity analysis against SARS-CoV-2. Heliyon. 2021;7:e07741. https://doi.org/10.1016/J.HELIYON.2021.E07741.

    Article  CAS  Google Scholar 

  20. Lee SY, Chuah Abdullah L, Rahman RA, Abas F, Chong GH. Stability and toxicity profile of Solution Enhanced Dispersion by Supercritical fluids (SEDS) formulated andrographis paniculata extract. Braz J Chem Eng. 2019;36:969–78. https://doi.org/10.1590/0104-6632.20190362S20180395.

    Article  CAS  Google Scholar 

  21. Sinha J, Mukhopadhyay S, Das N, Basu MK. Targeting of liposomal andrographolide to L. donovani-infected macrophages in vivo. Drug Deliv. 2000;7:209–13. https://doi.org/10.1080/107175400455137.

    Article  CAS  Google Scholar 

  22. Kalita B, Das MK, Sarma M, Deka A. Sustained anti-inflammatory effect of resveratrol-phospholipid complex embedded polymeric patch. AAPS PharmSciTech. 2017;18:629–45. https://doi.org/10.1208/S12249-016-0542-Y.

    Article  CAS  Google Scholar 

  23. Mangrulkar S, Shah P, Navnage S, Mazumdar P, Chaple D. Phytophospholipid complex of caffeic acid: development, in vitro characterization, and in vivo investigation of antihyperlipidemic and hepatoprotective action in rats. AAPS PharmSciTech. 2021;22(1):1–16. https://doi.org/10.1208/S12249-020-01887-7.

    Article  Google Scholar 

  24. Damle M, Mallya R. Development and evaluation of a novel delivery system containing phytophospholipid complex for skin aging. AAPS PharmSciTech. 2016;17:607–17. https://doi.org/10.1208/S12249-015-0386-X.

    Article  CAS  Google Scholar 

  25. Chakravarti RK, Kaur S, Samal SK, Kashyap MC, Sangamwar AT. Combination of phospholipid complex and matrix dispersion. AAPS PharmSciTech. 2021;22(5):1–13. https://doi.org/10.1208/S12249-021-02067-X.

    Article  Google Scholar 

  26. Grando FCC, Felício CA, Twardowschy A, Paula FM, Batista VG, Fernandes LC, et al. Modulation of peritoneal macrophage activity by the saturation state of the fatty acid moiety of phosphatidylcholine. Braz J Med Biol Res. 2009;42:599–605. https://doi.org/10.1590/S0100-879X2009005000003.

    Article  CAS  Google Scholar 

  27. Yu F, Ao M, Zheng X, Li N, Xia J, Li Y, et al. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency. Drug Deliv. 2017;24(1):825–33. https://doi.org/10.1080/10717544.2017.1321062.

    Article  CAS  Google Scholar 

  28. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4.

    Article  CAS  Google Scholar 

  29. Hyam S, Undar S, Ha TKJ, Hakur CPT, Uergen J, Ngel E, et al. Oral miltefosine for Indian visceral leishmaniasis. N Engl J Med. 2002;347(22):1739–46.

    Article  Google Scholar 

  30. Monge-Maillo B, López-Vélez R, Saravolatz LD. Miltefosine for visceral and cutaneous leishmaniasis: drug characteristics and evidence-based treatment recommendations. Clin Infect Dis. 2015;60:1398–404. https://doi.org/10.1093/CID/CIV004.

    Article  Google Scholar 

  31. Machado PR, Ampuero J, Guimarães LH, Villasboas L, Rocha AT, Schriefer A, et al. Miltefosine in the treatment of cutaneous leishmaniasis caused by Leishmania braziliensis in Brazil: a randomized and controlled trial. PLoS Negl Trop Dis. 2010;4:1–6. https://doi.org/10.1371/JOURNAL.PNTD.0000912.

    Article  Google Scholar 

  32. van Henten S, Tesfaye AB, Abdela SG, Tilahun F, Fikre H, Buyze J, et al. Miltefosine for the treatment of cutaneous leishmaniasis—a pilot study from Ethiopia. PLoS Negl Trop Dis. 2021;15:e0009460. https://doi.org/10.1371/JOURNAL.PNTD.0009460.

    Article  Google Scholar 

  33. Riezk A, Raynes JG, Yardley V, Murdan S, Croft SL. Activity of chitosan and its derivatives against Leishmania major and Leishmania mexicana in vitro. Antimicrob Agents Chemother. 2020;64(3):e01772-19. https://doi.org/10.1128/AAC.01772-19.

    Article  CAS  Google Scholar 

  34. Singh PK, Hasan T, Prasad O, Sinha L, Raj K, Misra N. FT-IR spectra and vibrational spectroscopy of andrographolide. Spectroscopy. 2006;20(5–6):275–83. https://doi.org/10.1155/2006/463204.

    Article  CAS  Google Scholar 

  35. Nzai JM, Proctor A. Soy lecithin phospholipid determination by Fourier transform infrared spectroscopy and the acid digest/arseno-molybdate method: a comparative study. JAOCS, J Am Oil Chem Soc. 1999;76(1):61–6. https://doi.org/10.1007/s11746-999-0048-9.

    Article  CAS  Google Scholar 

  36. Chi C, Zhang C, Liu Y, Nie H, Zhou J, Ding Y. Phytosome-nanosuspensions for silybin-phospholipid complex with increased bioavailability and hepatoprotection efficacy. Euro J Pharm Sci. 2020;144:105212. https://doi.org/10.1016/j.ejps.2020.105212.

    Article  CAS  Google Scholar 

  37. Nosáľová G, Majee SK, Ghosh K, Raja W, Chatterjee UR, Jureček Ľ, et al. Antitussive arabinogalactan of Andrographis paniculata demonstrates synergistic effect with andrographolide. Int J Biol Macromol. 2014;69:151–7. https://doi.org/10.1016/j.ijbiomac.2014.05.030.

    Article  CAS  Google Scholar 

  38. Pan L, Wang H, Gu K. Nanoliposomes as vehicles for astaxanthin: characterization, in vitro release evaluation and structure. Molecules. 2018;23(11):2822. https://doi.org/10.3390/molecules23112822.

    Article  CAS  Google Scholar 

  39. Ma Y, Yang Y, Xie J, Xu J, Yue P, Yang M. Novel nanocrystal-based solid dispersion with high drug loading, enhanced dissolution, and bioavailability of andrographolide. Int J Nanomedicine. 2018;13:3763–79. https://doi.org/10.2147/IJN.S164228.

    Article  CAS  Google Scholar 

  40. Zhao G, Zeng Q, Zhang S, Zhong Y, Wang C, Chen Y, et al. Effect of carrier lipophilicity and preparation method on the properties of andrographolide–solid dispersion. Pharmaceutics. 2019;11(2):74. https://doi.org/10.3390/pharmaceutics11020074.

    Article  CAS  Google Scholar 

  41. Wang X, Luo Z, Xiao Z. Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex. Carbohydr Polym. 2014;101:1027–32.

    Article  CAS  Google Scholar 

  42. Qiao H, Chen L, Rui T, Wang J, Chen T, Fu T, et al. Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by D-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate. Int J Nanomed. 2017;12:1033. https://doi.org/10.2147/IJN.S120887.

    Article  CAS  Google Scholar 

  43. Kundu N, Banik D, Sarkar N. Self-assembly of amphiphiles into vesicles and fibrils: investigation of structure and dynamics using spectroscopy and microscopy techniques. Langmuir. 2018;34(39):11637–54. https://doi.org/10.1021/acs.langmuir.7b04355.

    Article  CAS  Google Scholar 

  44. Sathappa M, Alder NN. Ionization properties of phospholipids determined by zeta potential measurements. Bio Protoc. 2016;6(22):e2030. https://doi.org/10.21769/BIOPROTOC.E2030.

    Article  Google Scholar 

  45. Espada CR, Ribeiro-Dias F, Dorta ML, de Araújo Pereira LI, de Carvalho EM, Machado PR, et al. Susceptibility to miltefosine in Brazilian clinical isolates of Leishmania (Viannia) braziliensis. Am J Trop Med Hyg. 2017;96:656. https://doi.org/10.4269/AJTMH.16-0811.

    Article  CAS  Google Scholar 

  46. Nakayama H, Desrivot J, Bories C, Franck X, Figadère B, Hocquemiller R, et al. In vitro and in vivo antileishmanial efficacy of a new nitrilquinoline against Leishmania donovani. Biomed Pharmacother. 2007;61:186–8. https://doi.org/10.1016/J.BIOPHA.2007.02.001.

    Article  CAS  Google Scholar 

  47. Meade JC. P-type transport ATPases in Leishmania and Trypanosoma. Parasite. 2019;26:69. https://doi.org/10.1051/parasite/2019069.

    Article  Google Scholar 

  48. Paul R, Banerjee S, Sen S, Dubey P, Maji S, Bachhawat AK, et al. A novel leishmanial copper P-type ATPase plays a vital role in parasite infection and intracellular survival. J Biol Chem. 2022;298:101539. https://doi.org/10.1016/j.jbc.2021.101539.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India to Ms. Purva Pingle for carrying out this work. Madhulika Namdeo was supported by the University Grant Commission as Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Purva Pingle, Atul Mourya, Madhulika Namdeo, Katta Chanti Babu, Harithasree Veerabomma: Conceptualization, experimentation, manuscript writing. Radheshyam Maurya, Pankaj Kumar Singh, Neelesh Kumar Mehra, Saurabh Srivastava, Jitender Madan: Manuscript editing and supervision.

Corresponding author

Correspondence to Jitender Madan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6717 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pingle, P., Mourya, A., Namdeo, M. et al. Andrographolide-Soya-L-α-Phosphatidyl Choline Complex Augmented Solubility and Drug Delivery in Leishmania donovani, a Causative Agent for Cutaneous and Visceral Leishmaniasis. AAPS PharmSciTech 24, 46 (2023). https://doi.org/10.1208/s12249-023-02507-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02507-w

Keywords

Navigation