Skip to main content

Advertisement

Log in

Assessment of Thermal and Hydrolytic Stabilities and Aqueous Solubility of Artesunate for Formulation Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

For the purpose of establishing the optimum processing parameters and storage conditions associated with nanolipid formulations of the artemisinin derivative artesunate, it was necessary to evaluate the thermal stability and solubility profiles of artesunate in aqueous solutions at various temperatures and pH. The effect of increased temperature and humidity on artesunate was determined by storing samples of the raw material in a climate chamber for 3 months and analyzing these by an established HPLC method. Artesunate remained relatively stable during storage up to 40°C ± 0.5°C and 75% relative humidity for 3 months, wherein it undergoes approximately 9% decomposition. At higher temperatures, substantially greater decomposition supervenes, with formation of dihydroartemisinin (DHA) and other products. In solution, artesunate is relatively stable at 15°C with less than 10% degradation over 24 h. The aqueous solubility of artesunate at different pH values after 60 min are pH 1.2 (0.1 M HCl) 0.26 mg/mL, pH 4.5 (acetate buffer) 0.92 mg/mL, distilled water 1.40 mg/mL, and pH 6.8 (phosphate buffer) 6.59 mg/mL, thus relating to the amount of ionized drug present. Overall, for optimal preparation and storage of the designated formulations of artesunate, relatively low temperatures will have to be maintained throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated during this study is available upon request to the authors.

References

  1. Hsu E. Reflections on the ‘discovery’ of the antimalarial qinghao. Br J Clin Pharmacol. 2006;61:666–70. https://doi.org/10.1111/j.1365-2125.2006.02673.x.

    Article  Google Scholar 

  2. Cui L, Su XZ. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev Anti Infect Ther. 2009;7:999–1003. https://doi.org/10.1586/eri.09.68.

    Article  CAS  Google Scholar 

  3. Guoqiao L, Ying L, Zelin L, Meiyi Z. Abstract. In: Guoqiao L, Ying L, Zelin L, Meiyi Z. Cambridge, editors. Artemisinin-based and other antimalarials: detailed account of studies by Chinese scientists who discovered and developed them. Academic Press, Elsevier; 2017 p. 1–67.

  4. Tiwari MK, Chaudhary S. Artemisinin‐derived antimalarial endoperoxides from bench‐side to bed‐side: chronological advancements and future challenges. Med Res Rev. 2020; 1–56. https://doi.org/10.1002/med.21657.

  5. Ho WE, Peh HY, Chan TK, Wong WSF. Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther. 2014;142:126e139. https://doi.org/10.1016/j.pharmthera.2013.12.001.

    Article  CAS  Google Scholar 

  6. Loo CSN, Lam NSK, Yu D, Su X-Z, Lu F. Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol Res. 2017;117:192–217. https://doi.org/10.1016/j.phrs.2016.11.012.

    Article  CAS  Google Scholar 

  7. Kiani BH, Kayani WK, Khayam AU, Dilshad E, Ismail H, Mirza B. Artemisinin and its derivatives: a promising cancer therapy. Mol Biol Rep. 2020;47:6321–36. https://doi.org/10.1007/s11033-020-05669-z.

    Article  CAS  Google Scholar 

  8. Xu C, Zhang H, Mu L, Yang. Artemisinins as anticancer drugs: novel therapeutic approaches, molecular mechanisms, and clinical trials. Front Pharmacol. 2020;11:529881. https://doi.org/10.3389/fphar.2020.529881.

    Article  CAS  Google Scholar 

  9. Dwivedi A, Mazumder A, Du Plessis L, Du Preez JL, Haynes RK, Du Plessis J. In vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells. Nanomedicine: Nanotechnology. Biol Med. 2015;11:2041–50. https://doi.org/10.1016/j.nano.2015.07.010.

    Article  CAS  Google Scholar 

  10. Burger C, Aucamp M, Du Preez J, Haynes RK, Ngwane A, Du Plessis J, et al. Formulation of natural oil nano-emulsions for the topical delivery of clofazimine, artemisone and decoquinate. Pharm Res. 2018;35:186. https://doi.org/10.1007/s11095-018-2471-9.

    Article  CAS  Google Scholar 

  11. Chadha R, Gupta S, Pathak N. Artesunate-loaded chitosan/lecithin nanoparticles: preparation, characterization, and in vivo studies. Drug Dev Ind Pharm. 2012;38(12):1538–46. https://doi.org/10.3109/03639045.2012.658812.

    Article  CAS  Google Scholar 

  12. Batty KT, Ilett KF, Davis TME. Chemical stability of artesunate injection and proposal for its administration by intravenous infusion. J Pharm Pharmacol. 1996;48:22–6. https://doi.org/10.1111/j.2042-7158.1996.tb05870.x.

    Article  CAS  Google Scholar 

  13. Hendriksen ICE, Mtove G, Kent A, Gesase S, Reyburn H, Lemnge MM, et al. Population pharmacokinetics of intramuscular artesunate in African children with severe malaria: implications for a practical dosing regimen. Clin Pharmacol Therapeutics. 2013;93:443–50. https://doi.org/10.1038/clpt.2013.26.

    Article  CAS  Google Scholar 

  14. Anon. Guidelines for administration of injectable artesunate for severe malaria. 2014. https://www.mmv.org/sites/default/files/uploads/docs/access/Injectable_Artesunate_Tool_Kit/InjectableArtesunate_posterEN.pdf. Accessed 22 Mar 2022.

  15. Newton P, Supittamongkol Y, Teja-Isavadharm P, Pukrittayakamee S, Navaratnam V, Bates I, et al. Antimalarial bioavailability and disposition of artesunate in acute falciparum malaria. Antimicrob Agents Chemother. 2000;4:972–7. https://doi.org/10.1128/AAC.44.4.972-977.2000.

    Article  Google Scholar 

  16. Morris CA, Duparc S, Borghini-Fuhrer I, Jung D, Shin CS, Fleckenstein L. Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar J. 2011;10:263. https://doi.org/10.1186/1475-2875-10-263.

    Article  CAS  Google Scholar 

  17. Haynes RK, Chan HW, Cheung MK, Lam WL, Soo MK, Tsang HW, et al. ID. C-10 ester and ether derivatives of dihydroartemisinin: 10-α artesunate, preparation of authentic 10-β artesunate, and of other esters and ether derivatives bearing potential aromatic intercalating groups at C-10. Eur J Org Chem. 2002; 113–132. https://doi.org/10.1002/1099-0690(20021)2002:1<113::AID-EJOC113>3.0.CO;2-N.

  18. Batty KT, Ilett KE, Powell SM, Martin J, Davis TME. Relative bioavailability of artesunate and dihydroartemisinin: investigations in the isolated perfused rat liver and in healthy Caucasian volunteers. Am J Trop Med Hyg. 2002;66:130–6. https://doi.org/10.4269/ajtmh.2002.66.130.

    Article  CAS  Google Scholar 

  19. Agnihotri J, Singh S, Bigonia P. Formal chemical stability analysis and solubility analysis of artesunate and hydroxychloroquine for development of parenteral dosage form. J Pharm Res. 2013;6:117–22. https://doi.org/10.1016/j.jopr.2012.11.025.

    Article  CAS  Google Scholar 

  20. Haynes RK, Chan HW, Lung CM, Ng NC, Wong HN, Shek LY, et al. Artesunate and dihydroartemisinin (DHA): unusual decomposition products formed under mild conditions and comments on the fitness of DHA as an antimalarial drug. ChemMedChem. 2007;2:1448–63. https://doi.org/10.1002/cmdc.200700064.

    Article  CAS  Google Scholar 

  21. Lin AJ, Lee M, Klayman DL. Antimalarial activity of new water-soluble dihydroartemisinin derivatives. 2. Stereospecificity of the ether side chain. J Med Chem. 1989;32:1249–52. https://doi.org/10.1021/jm00126a017.

    Article  CAS  Google Scholar 

  22. Ashford M. Bioavailability – physicochemical and dosage form factors. In: Aulton ME, Taylor KMG, editors. Aulton’s pharmaceutics: the design and manufacture of medicines. Amsterdam: Elsevier; 2013. p. 314–33.

  23. Li Y. Qinghaosu (artemisinin): chemistry and pharmacology. Acta Pharmacol Sin. 2012;33:1141–6. https://doi.org/10.1038/aps.2012.104.

    Article  CAS  Google Scholar 

  24. Haynes RK. From artemisinin to new artemisinin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr Top Med Chem. 2006;6:509–37. https://doi.org/10.2174/156802606776743129.

    Article  CAS  Google Scholar 

  25. Watson DJ, Laing L, Gibhard L, Wong HN, Haynes RK, Wiesner L. Towards new transmission-blocking combination therapies - pharmacokinetics of 10-amino-artemisinins and 11-aza-artemisinin, and comparison with dihydroartemisinin and artemether. Antimicrob Agents Chemother. 2021;65:e00990-e1021. https://doi.org/10.1128/AAC.00990-21.

    Article  CAS  Google Scholar 

  26. Pubchem, NIH US National Library of Medicine, National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/Artesunic-acid (Accessed 13 May 2022).

  27. Tran TH, Nguyen TD, Poudel BK, Nguyen HT, Kim JO, Yong CS, et al. Development and evaluation of artesunate-loaded chitosan-coated lipid nanocapsule as a potential drug delivery system against breast cancer. AAPS PharmSciTech. 2015;16:1307–16. https://doi.org/10.1208/s12249-015-0311-3.

    Article  CAS  Google Scholar 

  28. Xu R, Han T, Shen L, Zhao J, Lu X. Solubility determination and modelling for artesunate in binary solvent mixtures of methanol, ethanol, isopropanol and propylene glycol and water. J Chem Eng Data. 2019;64:755–62. https://doi.org/10.1021/acs.jced.8b00988.

    Article  CAS  Google Scholar 

  29. Lin AJ, Klayman DL, Milhous WK. Antimalarial activity of new water-soluble dihydroartemisinin derivatives. J Med Chem. 1987;30:2147–50. https://doi.org/10.1021/jm00394a037.

    Article  CAS  Google Scholar 

  30. Luo XD, Yeh HJC, Brossi A, Flippen-Anderson JL. Gillardi R The chemistry of drugs part IV: configurations of antimalarials derived from qinghaosu: dihydroqinghaosu, artemether, and artesunic acid. Helv Chim Acta. 1984;67:1515–22. https://doi.org/10.1002/hlca.19840670615.

    Article  CAS  Google Scholar 

  31. Batty KT, Ilett KF, Davis TME. Protein binding and α:β anomer ratio of dihydroartemisinin in vivo. Br J Clin Pharmacol. 2004;57:529–33. https://doi.org/10.1111/j.1365-2125.2004.02045.x.

    Article  CAS  Google Scholar 

  32. Cabri W, ID’Acquarica I, Simone P, Di Iorio M, Di Mattia M Gasparrini F, et al. Stereolability of dihydroartemisinin, an antimalarial drug a comprehensive kinetic investigation. Part 2 J Org Chem. 2011;76:4831–40. https://doi.org/10.1021/jo102392p.

    Article  CAS  Google Scholar 

  33. The International Pharmacopoeia 10th Edition 2020; Monographs, pharmaceutical substances. https://digicollections.net/phint/2020/index.html#d/b.6.1.30 (accessed 13 May 2022).

  34. European Medicines Agency. Stability testing of new drug substances and products Q1A(R2); Q1A(R2) Stability Testing of New Drug Substances and Products. In: Guidance Document: International Conference on Harmonisation. International Conference on Harmonisation. https://www.ema.europa.eu/en/ich-q1a-r2-stability-testing-new-drug-substances-drug-products-scientific-guideline. Accessed 22 Mar 2022.

  35. The International Pharmacopoeia 10th Edition 2021. https://www.gmp-compliance.org/gmp-news/10th-edition-of-the-international-pharmacopoeia. Accessed 13 May 2022.

Download references

Funding

This work was funded by the South African Medical Research Council (MRC) Flagship Project MALTB-Redox with funds from the National Treasury under its Economic Competitiveness and Support Package (UID MRC-RFA-UFSP-01–2013) (RKH) and by a South African National Research Foundation (SA NRF) grant (UID 129135) (RKH). The authors are grateful for the financial support of the Centre of Excellence for Pharmaceutical Sciences (Pharmacen) at the North-West University, Potchefstroom, South Africa.

Author information

Authors and Affiliations

Authors

Contributions

Post-graduate who was responsible for a substantial contribution to most of the analytical work: Bezuidenhout JW.

Conceptualization of the project: Liebenberg W, Aucamp M, and Stieger N.

Drafting and revising it critically for important intellectual content: Haynes RK and Aucamp M.

Final approval of the version to be published: Haynes RK, Liebenberg W, and Aucamp M.

All authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to M. Aucamp.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Disclaimer

Any opinions, findings and conclusions, or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in regard thereto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezuidenhout, J.W., Aucamp, M., Stieger, N. et al. Assessment of Thermal and Hydrolytic Stabilities and Aqueous Solubility of Artesunate for Formulation Studies. AAPS PharmSciTech 24, 33 (2023). https://doi.org/10.1208/s12249-022-02490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02490-8

Keywords

Navigation