Skip to main content
Log in

Atazanavir-Concentrate Loaded Soft Gelatin Capsule for Enhanced Concentration in Plasma, Brain, Spleen, and Lymphatics

  • Research Article
  • Recent Advances on Drug Delivery Systems for Viral Infections
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study investigates the development of atazanavir-concentrate loaded soft gelatin capsule for achieving enhanced atazanavir (ATV) concentration in plasma, brain, spleen, and lymphatics beneficial in the significant reduction of viral load in HIV infection. For this purpose, ATV-concentrate in the presence and absence of Soluplus with corn oil, oleic acid, tween 80, and propylene glycol was developed. The developed ATV-concentrate was found to have enhanced dispersibility with no signs of precipitation after dilution with simulated G.I fluid as evident from particle size (16.49±0.32 nm) and PDI (0.217±0.02) analysis. The rheological and molecular docking studies explainedthe reduction of viscosity of SuATV-C due to the intermolecular H-bond between ATV and Soluplus that helps to retard crystallization. The shell of the soft gelatin capsule retains its integrity when subjected to a folding endurance test on a texture analyzer depicting that the concentrate did not affect the integrity of the soft gelatin capsule shell. An ex vivo and in vivo pharmacokinetic study in rats revealed that the SuATV-C soft gelatin capsule (SuATV-C SGC) indicated 2.9 fold improvement in rate and extent of permeation and absorption than that of ATV-suspension. The tissue distribution study also exhibited higher drug concentration in the brain (2.5 fold), lymph nodes (2.7 fold), and spleen (1.2 fold) administered with SuATV-C SGC, revealing the overwhelming influence of Soluplus and corn oil. In a nutshell, these studies demonstrated that SuATV-C SGC seems to have the potential to deliver an anti-retroviral drug to the viral sanctuaries for the better management of HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fukushima K, Terasaka S, Haraya K, Kodera S, Seki Y, Wada A, et al. Pharmaceutical approach to HIV protease inhibitor atazanavir for bioavailability enhancement based on solid dispersion system. Biol Pharm Bull. 2007;30(4):733–8.

    Article  CAS  PubMed  Google Scholar 

  2. Colonno R, Rose R, McLaren C, Thiry A, Parkin N, Friborg J. Identification of I50L as the signature atazanavir (ATV)-resistance mutation in treatment-naive HIV-1-infected patients receiving ATV-containing regimens. J Infect Dis. 2004;189(10):1802–10.

    Article  CAS  PubMed  Google Scholar 

  3. Wood R, Phanuphak P, Cahn P, Pokrovskiy V, Rozenbaum W, Pantaleo G, et al. Long-term efficacy and safety of atazanavir with stavudine and lamivudine in patients previously treated with nelfinavir or atazanavir. JAIDS J Acquir Immune Defic Syndr. 2004;36(2):684–92.

    Article  CAS  PubMed  Google Scholar 

  4. Singh G, Pai RS. Optimized self-nanoemulsifying drug delivery system of atazanavir with enhanced oral bioavailability: in vitro/in vivo characterization. Expert Opin Drug Deliv. 2014;11(7):1023–32.

    Article  CAS  PubMed  Google Scholar 

  5. Saxena A, Shah D, Padmanabhan S, Gautam SS, Chowan GS, Mandlekar S, et al. Prediction of pH dependent absorption using in vitro, in silico, and in vivo rat models: early liability assessment during lead optimization. Eur J Pharm Sci. 2015;76:173–80.

    Article  CAS  PubMed  Google Scholar 

  6. DeVault KR, Talley NJ. Insights into the future of gastric acid suppression. Nat Rev Gastroenterol Hepatol. 2009;6(9):524–32.

    Article  CAS  PubMed  Google Scholar 

  7. Lahner E, Annibale B, Delle FG. Systematic review: impaired drug absorption related to the co-administration of antisecretory therapy. Aliment Pharmacol Ther. 2009;29(12):1219–29.

    Article  CAS  PubMed  Google Scholar 

  8. Khanlou H, Farthing C. Co-administration of atazanavir with proton-pump inhibitors and H2 blockers. JAIDS J Acquir Immune Defic Syndr. 2005;39(4):503.

    Article  PubMed  Google Scholar 

  9. Chattopadhyay N, Zastre J, Wong H-L, Wu XY, Bendayan R. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm Res. 2008;25(10):2262–71.

    Article  CAS  PubMed  Google Scholar 

  10. Khan SA, Rehman S, Nabi B, Iqubal A, Nehal N, Fahmy UA, et al. Boosting the brain delivery of Atazanavir through nanostructured lipid carrier-based approach for mitigating neuroaids. Pharmaceutics. 2020;12(11):1059.

    Article  CAS  PubMed Central  Google Scholar 

  11. Xia X, Zhou C, Ballell L, Garcia-Bennett AE. In vivo enhancement in bioavailability of atazanavir in the presence of proton-pump inhibitors using mesoporous materials. ChemMedChem. 2012;7(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  12. Morgen M, Saxena A, Chen X-Q, Miller W, Nkansah R, Goodwin A, et al. Lipophilic salts of poorly soluble compounds to enable high-dose lipidic SEDDS formulations in drug discovery. Eur J Pharm Biopharm. 2017;117:212–23.

    Article  CAS  PubMed  Google Scholar 

  13. Singh G, Pai RS. Atazanavir-loaded Eudragit RL 100 nanoparticles to improve oral bioavailability: optimization and in vitro/in vivo appraisal. Drug Deliv. 2016;23(2):532–9.

    Article  CAS  PubMed  Google Scholar 

  14. Tomilo DL, Smith PF, Ogundele AB, Difrancesco R, Berenson CS, Eberhardt E, et al. Inhibition of atazanavir oral absorption by lansoprazole gastric acid suppression in healthy volunteers. Pharmacotherapy. 2006;26(3):341–6.

    Article  CAS  PubMed  Google Scholar 

  15. Jain A, Kaur R, Beg S, Kushwah V, Jain S, Singh B. Novel cationic supersaturable nanomicellar systems of raloxifene hydrochloride with enhanced biopharmaceutical attributes. Drug Deliv Transl Res. 2018;8(3):670–92.

    Article  CAS  PubMed  Google Scholar 

  16. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.

    Article  CAS  PubMed  Google Scholar 

  17. Jo K, Kim H, Khadka P, Jang T, Kim SJ, Hwang S-H, et al. Enhanced intestinal lymphatic absorption of saquinavir through supersaturated self-microemulsifying drug delivery systems. Asian J Pharm Sci. 2020;15(3):336–46.

    Article  PubMed  Google Scholar 

  18. Xu S, Dai W-G. Drug precipitation inhibitors in supersaturable formulations. Int J Pharm. 2013;453(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  19. Ilie A-R, Griffin BT, Vertzoni M, Kuentz M, Kolakovic R, Prudic-Paus A, et al. Exploring precipitation inhibitors to improve in vivo absorption of cinnarizine from supersaturated lipid-based drug delivery systems. Eur J Pharm Sci. 2021;159:105691.

    Article  CAS  PubMed  Google Scholar 

  20. Park SY, Jin CH, Goo YT, Chae BR, Yoon HY, Kim CH, et al. Supersaturable self-microemulsifying drug delivery system enhances dissolution and bioavailability of telmisartan. Pharm Dev Technol. 2021;26(1):60–8.

    Article  CAS  PubMed  Google Scholar 

  21. Lee DH, Yeom DW, Song YS, Cho HR, Choi YS, Kang MJ, et al. Improved oral absorption of dutasteride via Soluplus®-based supersaturable self-emulsifying drug delivery system (S-SEDDS). Int J Pharm. 2015;478(1):341–7.

    Article  CAS  PubMed  Google Scholar 

  22. Shamma RN, Basha M. Soluplus®: a novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technol. 2013;237:406–14.

    Article  CAS  Google Scholar 

  23. Wu W, Wang Y, Que L. Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur J Pharm Biopharm. 2006;63(3):288–94.

    Article  CAS  PubMed  Google Scholar 

  24. Baheti A, Srivastava S, Sahoo D, Lowalekar R, Prasad Panda B, Kumar Padhi B, et al. Development and pharmacokinetic evaluation of industrially viable self-microemulsifying drug delivery systems (SMEDDS) for terbinafine. Curr Drug Deliv. 2016;13(1):65–75.

    Article  CAS  Google Scholar 

  25. Patel MH, Sawant KK. Self microemulsifying drug delivery system of lurasidone hydrochloride for enhanced oral bioavailability by lymphatic targeting: in vitro, Caco-2 cell line and in vivo evaluation. Eur J Pharm Sci. 2019;138:105027.

    Article  CAS  PubMed  Google Scholar 

  26. Sharma R, Rana V. Effect of carboxymethylation on rheological and drug release characteristics of Terminalia catappa gum. Carbohydr Polym. 2017;175:728–38.

    Article  CAS  PubMed  Google Scholar 

  27. Kamboj S, Sethi S, Rana V. Lipid based delivery of Efavirenz: an answer to its erratic absorption and food effect. Eur J Pharm Sci. 2018;123:199–216.

    Article  CAS  PubMed  Google Scholar 

  28. Khurana RK, Bansal AK, Beg S, Burrow AJ, Katare O, Singh KK, et al. Enhancing biopharmaceutical attributes of phospholipid complex-loaded nanostructured lipidic carriers of mangiferin: systematic development, characterization and evaluation. Int J Pharm. 2017;518(1-2):289–306.

    Article  CAS  PubMed  Google Scholar 

  29. Li C, Wang J-X, Le Y, Chen J-F. Studies of bicalutamide–excipients interaction by combination of molecular docking and molecular dynamics simulation. Mol Pharm. 2013;10(6):2362–9.

    Article  CAS  PubMed  Google Scholar 

  30. Geetha P, Sivaram AJ, Jayakumar R, Mohan CG. Integration of in silico modeling, prediction by binding energy and experimental approach to study the amorphous chitin nanocarriers for cancer drug delivery. Carbohydr Polym. 2016;142:240–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hate SS, Reutzel-Edens SM, Taylor LS. Interplay of adsorption, supersaturation and the presence of an absorptive sink on drug release from mesoporous silica-based formulations. Pharm Res. 2020;37(8):1–18.

    Article  Google Scholar 

  32. Kamboj S, Rana V. Quality-by-design based development of a self-microemulsifying drug delivery system to reduce the effect of food on Nelfinavir mesylate. Int J Pharm. 2016;501(1-2):311–25.

    Article  CAS  PubMed  Google Scholar 

  33. Dhumal DM, Akamanchi K. Self-microemulsifying drug delivery system for camptothecin using new bicephalous heterolipid with tertiary-amine as branching element. Int J Pharm. 2018;541(1-2):48–55.

    Article  CAS  PubMed  Google Scholar 

  34. Kamboj S, Sharma R, Singh K, Rana V. Aprepitant loaded solid preconcentrated microemulsion for enhanced bioavailability: a comparison with micronized aprepitant. Eur J Pharm Sci. 2015;78:90–102.

    Article  CAS  PubMed  Google Scholar 

  35. Ghai D, Sinha VR. Nanoemulsions as self-emulsified drug delivery carriers for enhanced permeability of the poorly water-soluble selective β1-adrenoreceptor blocker Talinolol. Nanomedicine. 2012;8(5):618–26.

    Article  CAS  PubMed  Google Scholar 

  36. Patel MH, Mundada VP, Sawant KK. Novel drug delivery approach via self-microemulsifying drug delivery system for enhancing oral bioavailability of asenapine maleate: optimization, characterization, cell uptake, and in vivo pharmacokinetic studies. AAPS PharmSciTech. 2019;20(2):1–8.

    Article  CAS  Google Scholar 

  37. Yadav M, Trivedi V, Upadhyay V, Shah G, Baxi GA, Goswami S, et al. Comparison of extraction procedures for assessment of matrix effect for selective and reliable determination of atazanavir in human plasma by LC–ESI-MS/MS. J Chromatogr B. 2012;885:138–49.

    Article  Google Scholar 

  38. Sun M, Wu C, Fu Q, Di D, Kuang X, Wang C, et al. Solvent-shift strategy to identify suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid dispersions. Int J Pharm. 2016;503(1-2):238–46.

    Article  CAS  PubMed  Google Scholar 

  39. Gardouh AR, Nasef AM, Mostafa Y, Gad S. Design and evaluation of combined atorvastatin and ezetimibe optimized self-nano emulsifying drug delivery system. J Drug Deliv Sci Technol. 2020;60:102093.

    Article  CAS  Google Scholar 

  40. Lawless E, Griffin BT, O’Mahony A, O’Driscoll CM. Exploring the impact of drug properties on the extent of intestinal lymphatic transport-in vitro and in vivo studies. Pharm Res. 2015;32(5):1817–29.

    Article  CAS  PubMed  Google Scholar 

  41. Goo YT, Song SH, Yeom DW, Chae BR, Yoon HY, Kim CH, et al. Enhanced oral bioavailability of valsartan in rats using a supersaturable self-microemulsifying drug delivery system with P-glycoprotein inhibitors. Pharm Dev Technol. 2020;25(2):178–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Council of Scientific & Industrial Research (CSIR), New Delhi, India, for providing Direct-SRF (sanction no. 09/140(0176)/2019-EMR-I). The generous supply of atazanavir sulfate from Sun Pharmaceutical Industries Ltd., Gurugram, India, is also appreciated. The authors are also thankful to Gattefosses.a., BASF, and Croda Chemicals, for their kind donation of the surfactants and the oils used in this study.

Funding

This research work was supported by the Council of Scientific & Industrial Research (CSIR), New Delhi, India (Grant No. 09/140(0176)/2019-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vikas Rana.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Editorial Responsibility: Claudio Salomon

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 5446 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, S., Rana, V. Atazanavir-Concentrate Loaded Soft Gelatin Capsule for Enhanced Concentration in Plasma, Brain, Spleen, and Lymphatics. AAPS PharmSciTech 23, 270 (2022). https://doi.org/10.1208/s12249-022-02428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02428-0

Keywords

Navigation