Skip to main content

Advertisement

Log in

Solid Lipid Nanoparticles Enhance the Delivery of the HIV Protease Inhibitor, Atazanavir, by a Human Brain Endothelial Cell Line

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Protease inhibitors (PIs) exhibit low brain permeability. As a result, unchallenged HIV viral replication can lead to HIV-encephalitis and antiretroviral drug resistance. The objective of this study was to develop and evaluate a lipid nanoparticle system for enhanced brain delivery of the potent and frequently used HIV PI, atazanavir, using a well characterized human brain microvessel endothelial cell line (hCMEC/D3) representative of the blood-brain barrier.

Methods

Solid lipid nanoparticles (SLNs) were prepared by a thin film hydration technique and analyzed for atazanavir encapsulation efficiency, particle size, morphology, zeta potential and drug release. Cell viability experiments demonstrate that SLNs exhibit no toxicity in hCMEC/D3 cells up to a concentration corresponding to 200 nM of atazanavir.

Results

Spherical SLNs with an average particle size of ~167 nm were formulated. Delivery of [3H]-atazanavir by SLNs led to a significantly higher accumulation by the endothelial cell monolayer as compared to the drug aqueous solution. Furthermore, release of Rhodamine-123 (a fluorescent probe) by SLNs also resulted in a higher cellular accumulation.

Conclusions

These data suggest that SLNs could be a promising drug delivery system to enhance brain uptake of atazanavir and potentially other PIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Swindells. Current concepts in the treatment of HIV infection with focus on brain disease. In I. G. H. E. Gendelman, I. P. Everall, S. A. Lipton, and S. Swindells (eds.), The Neurology of AIDS, Oxford University Press, New York, 2005.

    Google Scholar 

  2. F. Aweeka, A. Jayewardene, S. Staprans, S. E. Bellibas, B. Kearney, P. Lizak, T. Novakovic-Agopian, and R. W. Price. Failure to detect nelfinavir in the cerebrospinal fluid of HIV-1-infected patients with and without AIDS dementia complex. J. Acquir. Immune Defic. Syndr. Human Retrovirol. 20(1):39–43 (1999).

    CAS  Google Scholar 

  3. S. A. Thomas. Anti-HIV drug distribution to the central nervous system. Curr. Pharm. Des. 10(12):1313–1324 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. A. Schnyder, and J. Huwyler. Drug transport to brain with targeted liposomes. NeuroRx. 2(1):99–107 (2005).

    Article  PubMed  Google Scholar 

  5. A. E. Gulyaev, S. E. Gelperina, I. N. Skidan, A. S. Antropov, G. Y. Kivman, and J. Kreuter. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm. Res. 16(10):1564–1569 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. J. Wang, X. Sun, and Z. Zhang. Enhanced brain targeting by synthesis of 3,5-dioctanoyl-5-fluor-2-deoxyuridine and incorporation into solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 54(3):285–290 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. J. Kreuter. Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev. 47(1):65–81 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. T. K. Vyas, L. Shah, and M. M. Amiji. Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin. Drug Deliv. 3(5):613–628 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. L. Kinman, T. Bui, K. Larsen, C- Tsai, D. Anderson, W. R. Morton, S- Hu, and R. J. Y. Ho. Optimization of lipid-indinavir complexes for localization in lymphoid tissues of HIV-infected macaques. J. Acquired Immune Defic. Syndr. 42(2):155–161 (2006).

    Article  CAS  Google Scholar 

  10. J. F. Gagne, A. Desormeaux, S. Perron, M. J. Tremblay, and M. G. Bergeron. Targeted delivery of indinavir to HIV-1 primary reservoirs with immunoliposomes. Biochim. Biophys. Acta. 1558(2):198–210 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. A. Deìsormeaux, and M. G. Bergeron. Lymphoid tissue targeting of anti-HIV drugs using liposomes. Methods Enzymol. 391(SPEC. ISS.):330–351 (2005).

    Article  CAS  Google Scholar 

  12. A. R. Bender, H. Von Briesen, J. Kreuter, I. B. Duncan, and H. Rubsamen-Waigmann. Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro. Antimicrob. Agents Chemother. 40(6):1467–1471 (1996).

    PubMed  CAS  Google Scholar 

  13. H. Dou, J. Morehead, C. J. Destache, J. D. Kingsley, L. Shlyakhtenko, Y. Zhou, M. Chaubal, J. Werling, J. Kipp, B. E. Rabinow, and H. E. Gendelman. Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human monocyte-derived macrophages. Virology. 358(1):148–158 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. L. K. Shah, and Mansoor M. Amiji. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm. Res. 23(11):2638–2645 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. R. Lobenberg, L. Araujo, and J. Kreuter. Body distribution of azidothymidine bound to nanoparticles after oral administration. Eur. J. Pharm. Biopharm. 44(2):127–132 (1997).

    Article  CAS  Google Scholar 

  16. R. Lobenberg, J. Maas, and J. Kreuter. Improved body distribution of 14C-labelled AZT bound to nanoparticles in rats determined by radioluminography. J. Drug Target. 5(3):171–179 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. Reddy L. Harivardhan, R. S. R. Murthy, R. K. Sharma, K. Chuttani, and A. K. Mishra. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in dalton's lymphoma tumor bearing mice. J. Control. Release. 105(3):185–98 (2005).

    Article  CAS  Google Scholar 

  18. G. P. Zara, R. Cavalli, A. Bargoni, A. Fundarò, D. Vighetto, and M. R. Gasco. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: Pharmacokinetics and distribution of doxorubicin in brain and other tissues. J. Drug Target. 10(4):327–335 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. A. Fundaro, R. Cavalli, A. Bargoni, D. Vighetto, G. P. Zara, and M. R. Gasco. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: Pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol. Res. 42(4):337–343 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. A. Bargoni, R. Cavalli, O. Caputo, A. Fundarò, M. R. Gasco, and G. P. Zara. Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharm. Res. 15(5):745–750 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. J. M. Koziara, R. J. Mumper, J. J. Oh, W. S. Akers, and S. P. Ferraris. Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles. Pharm. Res. 22(11):1821–1828 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. P. R. Lockman, M. O. Oyewumi, J. M. Koziara, K. E. Roder, R. J. Mumper, and D. D. Allen. Brain uptake of thiamine-coated nanoparticles. J. Control. Release. 93(3):271–282 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. J. Kreuter. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol. 4(5):484–488 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. H. R. Kim, S. Gil, K. Andrieux, V. Nicolas, M. Appel, H. Chacun, D. Desmaele, F. Taran, D. Georgin, and P. Couvreur. Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell. Mol. Life Sci. 64(3):356–364 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. Y- Gong, B. Robinson, R. Rose, C. Deminie, T. Spicer, and M. Markowitz. Antiviral activity and resistance profile of an HIV-1 protease inhibitor BMS-232632. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, 1998.

  26. X. Rabasseda, J. Silvestre, and J. Castañer. BMS-232632. Anti-HIV, HIV-1 protease inhibitor. Drugs Future. 24(4):375–380 (1999).

    Article  CAS  Google Scholar 

  27. R. W. Sparidans, F. Dost, K. M. Crommentuyn, A. D. Huitema, J. H. Schellens, and J. H. Beijnen. Liquid chromatographic assay for the protease inhibitor atazanavir in plasma. Biomed. Chromatogr. 20(1):72–76 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. Susan Budavari, and Maryadele J. O’Neil. The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 13th edn, Merck, Whitehouse Station, NJ, 2001.

  29. D. Aquilano, R. Cavalli, and M. R. Gasco. Solid lipospheres obtained from hot microemulsions in the presence of different concentrations of cosurfactant: The crystallization of stearic acid polymorphs. Thermochim. Acta. 230:29–37 (1993).

    Article  CAS  Google Scholar 

  30. H. Komatsu, A. Kitajima, and S. Okada. Pharmaceutical characterization of commercially available intravenous fat emulsions: Estimation of average particle size, size distribution and surface potential using photon correlation spectroscopy. Chem. Pharm. Bull. (Tokyo). 43(8):1412–1415 (1995).

    CAS  Google Scholar 

  31. J. Carmichael, W. Degraff, A. Gazdar, J. Minna, and J. Mitchell. Evaluation of a tetrazolinum-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res. 47:936–942 (1978).

    Google Scholar 

  32. P. T. Ronaldson, and R. Bendayan. HIV-1 viral envelope glycoprotein gp120 triggers an inflammatory response in cultured rat astrocytes and regulates the functional expression of P-glycoprotein. Mol. Pharmacol. 70(3):1087–1098 (2006).

    Article  PubMed  CAS  Google Scholar 

  33. H. L. Wong, R. Bendayan, A. M. Rauth, and X. Y. Wu. Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers. J Pharm. Sci. 93(8):1993–2008 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. L. V. Johnson, M. L. Walsh, and L. B. Chen. Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad Sci. 77(2):990–994 (1980).

    Article  PubMed  CAS  Google Scholar 

  35. M. Wei, A. J. Ruys, B. K. Milthorpe, and C. C. Sorrell. Solution ripening of hydroxyapatite nanoparticles: Effects on electrophoretic deposition. J. Biomed. Materi. Res. 45(1):11–19 (1999).

    Article  CAS  Google Scholar 

  36. A. J. Barker, B. Cage, S. Russek, and C. R. Stoldt. Ripening during magnetite nanoparticle synthesis, Resulting interfacial defects and magnetic properties. J. Appl. Phys. 98(6):1–7 (2005).

    Article  CAS  Google Scholar 

  37. D. Michael. Triplett II. Enabling Solid Lipid Nanoparticle Drug Delivery Technology By Investigating Improved Production Techniques. [Doctor of Philosophy]. The Ohio State University: The Ohio State University; 2004 Available from: The Ohio State University.

  38. Maria R. Gasco, Lungo Po Antonelli. Method for preparing solid lipid microspheres having a narrow size distribution. USA patent 5,250,236. 1993.

  39. W. Sutananta, D. Q. Craig, and J. M. Newton. An investigation into the effects of preparation conditions and storage on the rate of drug release from pharmaceutical glyceride bases. J. Pharm. Pharmacol. 47(5):355–359 (1995).

    PubMed  CAS  Google Scholar 

  40. J. Hamdani, A. J. Moes, and K. Amighi. Development and evaluation of prolonged release pellets obtained by the melt pelletization process. Int. J. Pharm. 245(1–2):167–177 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. R. N. Alyaudtin, A. Reichiel, R. Lobenberg, P. Ramge, J. Kreuter, and D. J. Begley. Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro. J. Drug Target. 9(3):209–221 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. J. Olivier, L. Fenart, R. Chauvet, C. Pariat, R. Cecchelli, and W. Couet. Indirect evidence that drug brain targeting using polysorbate 80- coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm. Res. 16(12):1836–1842 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. S. Steiniger, D. Zenker, H. V. Briesen, D. Begley, and J. Kreuter. The influence of polysorbate 80-coated nanoparticles on bovine brain capillary endothelial cells in vitro. Proc. Int. Symp. Control Rel. Bioact. Mater. 26:789–790 (1999).

    Google Scholar 

  44. P. R. Lockman, J. Koziara, K. E. Roder, J. Paulson, T. J. Abbruscato, R. J. Mumper, and D. D. Allen. In vivo and in vitro assessment of baseline blood-brain barrier parameters in the presence of novel nanoparticles. Pharm. Res. 20(5):705–713 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. P. R. Lockman, D. Allen, J. M. Koziara, and R. J. Mumper. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J. Drug Target. 12(9–10):635–641 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. Carsten Olbrich, Kerstin Tabatt, Sylvia A. Wissing, Nadja Schöler, and R. H. Müller. Solid lipid nanoparticles (SLN): interaction with cells, cytokine production and enzymatic degradation. In C. Nastruzzi (ed.), Lipospheres in Drug Targets and Delivery: Approaches, Methods, and Applications, 1st edn. 2005.

  47. H. L. Wong, A. M. Rauth, R. Bendayan, J. L. Manias, M. Ramaswamy, Z. Liu, S. Z. Erhan, and X. Y. Wu. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm. Res. 23(7):1574–1585 (2006).

    Article  PubMed  CAS  Google Scholar 

  48. R. H. Müller, D. Rühl, S. Runge, W. Mehnert, and K. Schulze-Forster. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm. Res. 14(4):458–462 (1997).

    Article  PubMed  Google Scholar 

  49. M. Hong. Transport properties of thymidine and it analog, Zidovudine (ZDV) by microglia cells: Relevance to HIV-1 encephalopathy and AIDs dementia. M.Sc. University of Toronto; 2001 p.

  50. J. Kreuter, P. Ramge, V. Petrov, S. Hamm, S. E. Gelperina, B. Engelhardt, R. Alyautdin, H. von Briesen, and D. J. Begley. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm. Res. 20(3):409–416 (2003).

    Article  PubMed  CAS  Google Scholar 

  51. M. B. Lucia, S. Rutella, E. Rastrelli, A. Savarino, R. Cauda, and C. Golotta. Atazanavir inhibits P-glycoprotein and multidrug resistance-associated protein efflux activity. J. Acquir. Immune Defic. Syndr. 39(5):635–637 (2005).

    PubMed  CAS  Google Scholar 

  52. J. S. Lee, K. Paull, M. Alvarez, C. Hose, A. Monks, M. Grever, A. T. Fojo, and S. E. Bates. Rhodamine efflux patterns predict P-glycoprotein substrates in the national cancer institute drug screen. Mol. Pharmacol. 46(4):627–638 (1999).

    Google Scholar 

  53. R. Bendayan, P. T. Ronaldson, D. Gingras, and M. Bendayan. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J. Histochem. Cytochem. 54(10):1159–1167 (2006).

    Article  PubMed  CAS  Google Scholar 

  54. C. Cordon-Cardo, J. P. O'Brien, D. Casals, L. Rittman-Grauer, J. L. Biedler, M. R. Melamed, and J. R. Bertino. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood–brain barrier sites. Proc. Natl. Acad. Sci U.S.A. 86(2):695–698 (1989).

    Article  PubMed  CAS  Google Scholar 

  55. H. L. Wong, R. Bendayan, A. M. Rauth, H. Y. Xue, K. Babakhanian, and X. Y. Wu. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther. 317(3):1372–1381 (2006).

    Article  PubMed  CAS  Google Scholar 

  56. J. M. Koziara, P. R. Lockman, D. D. Allen, and R. J. Mumper. Paclitaxel nanoparticles for the potential treatment of brain tumors. J. Control Release. 30;99(2):259–269 (2004).

    Google Scholar 

Download references

Acknowledgments

This research is supported by a grant from the Ontario HIV Treatment Network awarded to Dr. R. Bendayan. The authors thank Mr. K. Babakhanian, Mr. B. Calvieri and Mr. S. Doyle for technical assistance with fluorescence and electron microscopy imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reina Bendayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, N., Zastre, J., Wong, HL. et al. Solid Lipid Nanoparticles Enhance the Delivery of the HIV Protease Inhibitor, Atazanavir, by a Human Brain Endothelial Cell Line. Pharm Res 25, 2262–2271 (2008). https://doi.org/10.1007/s11095-008-9615-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9615-2

KEY WORDS

Navigation