Skip to main content

Advertisement

Log in

Betamethasone Dipropionate Nanocrystals: Investigation, Feasibility and In Vitro Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Corticosteroids, such as betamethasone dipropionate (BMD), have been the mainstay in topical therapy as potent glucocorticoid receptor agonist with immune suppression, anti-proliferative, and anti-inflammatory effects. Moreover, they have poor skin penetration, which is a hurdle against its potential therapeutic benefits. In present investigation, nanocrystals as carrier for effective topical delivery of BMD were explored using wet milling as technique and polysorbate 80 as a non-ionic stabilizer. Upon optimizing different process parameters, promising results were observed at stabilizer concentration of 0.9% w/v having particle size analysis (PSA) and PDI as 284 nm and 0.299, respectively. These results were supported by the FTIR and PXRD spectra of BMD-API and BMD nanocrystals, suggesting strong crystal lattice structure of BMD being reduced due to milling. The reduction in particle morphology was evident from the FESEM images. The optimized batch of BMD nanocrystals was incorporated into Carbopol gel base, showing pH 6.2 ± 0.2 and viscosity 87.00 ± 5.2 Pa s at 25°C. A drug diffusion study using Franz diffusion cell proclaimed around ~86% BMD release from nanogel across the membrane. Also, it was observed that the BMD permeation across the skin was 2.39-fold higher with marketed formulation in contrast to BMD nanogel, suggesting prolonged drug release. The skin permeation flux with nanogel was at a much lower rate along with ~50.27% drug retention in different strata of skin, resulting in retention of drug nanocrystals. Thus, in nutshell the prolonged drug release from nanogel would fulfill the aim of once a day application and would aid in reducing the adverse events associated with repeated drug applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang S-L, Zheng Y, Zhang W-Q. Betamethasone dipropionate. Acta Crystallogr Sect E: Struct Rep Online. 2004;60(6):o1063–o4.

    Article  CAS  Google Scholar 

  2. Lovato P, Norsgaard H, Tokura Y, Røpke MA. Calcipotriol and betamethasone dipropionate exert additive inhibitory effects on the cytokine expression of inflammatory dendritic cell–Th17 cell axis in psoriasis. J Dermatol Sci. 2016;81(3):153–64.

    Article  CAS  PubMed  Google Scholar 

  3. Korting H, Zienicke H, Schäfer-Korting M, Braun-Falco O. Liposome encapsulation improves efficacy of betamethasone dipropionate in atopic eczema but not in psoriasis vulgaris. Eur J Clin Pharmacol. 1990;39(4):349–51.

    Article  CAS  PubMed  Google Scholar 

  4. Sawarkar SP, Yadav V. Novel drug delivery strategies and gene therapy regimen as a promising perspective for management of psoriasis. Indian J Dermatol, Venereol Leprol. 2021;87(3).

  5. Tung N-T, Vu V-D, Nguyen P-L. DoE-based development, physicochemical characterization, and pharmacological evaluation of a topical hydrogel containing betamethasone dipropionate microemulsion. Colloids Surf B: Biointerfaces. 2019;181:480–8.

    Article  CAS  PubMed  Google Scholar 

  6. Sharma OP, Patel V, Mehta T. Design of experiment approach in development of febuxostat nanocrystal: application of Soluplus® as stabilizer. Powder Technol. 2016;302:396–405.

    Article  CAS  Google Scholar 

  7. Müller RH, Gohla S, Keck CM. State of the art of nanocrystals–special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1–9.

    Article  PubMed  Google Scholar 

  8. Patel V, Sharma OP, Mehta T. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery. Expert Opinion Drug Deliv. 2018;15(4):351–68.

    Article  Google Scholar 

  9. Lee J, Lee S-J, Choi J-Y, Yoo JY, Ahn C-H. Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur J Pharm Sci. 2005;24(5):441–9.

    Article  CAS  PubMed  Google Scholar 

  10. Sharma OP, Patel V, Mehta T. Nanocrystal for ocular drug delivery: hope or hype. Drug Deliv Transl Res. 2016;6(4):399–413.

    CAS  PubMed  Google Scholar 

  11. Berglund KD, Przybycien TM, Tilton RD. Coadsorption of sodium dodecyl sulfate with hydrophobically modified nonionic cellulose polymers. 1. Role of polymer hydrophobic modification. Langmuir. 2003;19(7):2705–13.

    Article  CAS  Google Scholar 

  12. Berglund KD, Przybycien TM, Tilton RD. Coadsorption of sodium dodecyl sulfate with hydrophobically modified nonionic cellulose polymers. 2. Role of surface selectivity in adsorption hysteresis. Langmuir. 2003;19(7):2714–21.

    Article  CAS  Google Scholar 

  13. Patel V, Sharma OP, Mehta TA. Impact of process parameters on particle size involved in media milling technique used for preparing clotrimazole nanocrystals for the management of cutaneous candidiasis. AAPS PharmSciTech. 2019;20(5):1–15.

    Article  CAS  Google Scholar 

  14. George M, Ghosh I. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. Eur J Pharm Sci. 2013;48(1-2):142–52.

    Article  CAS  PubMed  Google Scholar 

  15. Van Eerdenbrugh B, Vermant J, Martens JA, Froyen L, Van Humbeeck J, Augustijns P, et al. A screening study of surface stabilization during the production of drug nanocrystals. J Pharm Sci. 2009;98(6):2091–103.

    Article  PubMed  Google Scholar 

  16. Choi J-Y, Yoo JY, Kwak H-S, Nam BU, Lee J. Role of polymeric stabilizers for drug nanocrystal dispersions. Curr Appl Phys. 2005;5(5):472–4.

    Article  Google Scholar 

  17. Sun W, Tian W, Zhang Y, He J, Mao S, Fang L. Effect of novel stabilizers—cationic polymers on the particle size and physical stability of poorly soluble drug nanocrystals. Nanomedicine. 2012;8(4):460–7.

    Article  CAS  PubMed  Google Scholar 

  18. Tang SY, Manickam S, Wei TK, Nashiru B. Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrason Sonochem. 2012;19(2):330–45.

    Article  CAS  PubMed  Google Scholar 

  19. Kollipara S, Bende G, Movva S, Saha R. Application of rotatable central composite design in the preparation and optimization of poly (lactic-co-glycolic acid) nanoparticles for controlled delivery of paclitaxel. Drug Dev Ind Pharm. 2010;36(11):1377–87.

    Article  CAS  PubMed  Google Scholar 

  20. Shah SNH, Asghar S, Choudhry MA, Akash MSH, Rehman N, Baksh S. Formulation and evaluation of natural gum-based sustained release matrix tablets of flurbiprofen using response surface methodology. Drug Dev Ind Pharm. 2009;35(12):1470–8.

    Article  CAS  PubMed  Google Scholar 

  21. Singh B, Chakkal SK, Ahuja N. Formulation and optimization of controlled release mucoadhesive tablets of atenolol using response surface methodology. AAPS PharmSciTech. 2006;7(1):E19–28.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sharma S, Kumar A, Sahni JK, Ali J, Baboota S. Nanoemulsion based hydrogel containing omega 3 fatty acids as a surrogate of betamethasone dipropionate for topical delivery. Adv Sci Lett. 2012;6(1):221–31.

    Article  CAS  Google Scholar 

  23. Sochan A, Bieganowski A, Ryzak M, Dobrowolski R, Bartminski P. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int Agrophysics. 2012;26(1).

  24. Wolf M, Halper M, Pribyl R, Baurecht D, Valenta C. Distribution of phospholipid based formulations in the skin investigated by combined ATR-FTIR and tape stripping experiments. Int J Pharm. 2017;519(1-2):198–205.

    Article  CAS  PubMed  Google Scholar 

  25. Nallusamy S, Manoj BA. X-ray Differaction and FESEM analysis for mixture of hybrid nanoparticles in heat transfer applications. J Nano Res: Trans Tech Publ. 2016:58–67.

  26. Schawe JE. Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J Therm Anal Calorim. 2014;116(3):1165–73.

    Article  CAS  Google Scholar 

  27. Hawe A, Frieß W. Impact of freezing procedure and annealing on the physico-chemical properties and the formation of mannitol hydrate in mannitol–sucrose–NaCl formulations. Eur J Pharm Biopharm. 2006;64(3):316–25.

    Article  CAS  PubMed  Google Scholar 

  28. Sandoval AJ, Nuñez M, Müller AJ, Della Valle G, Lourdin D. Glass transition temperatures of a ready to eat breakfast cereal formulation and its main components determined by DSC and DMTA. Carbohydr Polym. 2009;76(4):528–34.

    Article  CAS  Google Scholar 

  29. Colombo M, Staufenbiel S, Rühl E, Bodmeier R. In situ determination of the saturation solubility of nanocrystals of poorly soluble drugs for dermal application. Int J Pharm. 2017;521(1-2):156–66.

    Article  CAS  PubMed  Google Scholar 

  30. Deng J, Huang L, Liu F. Understanding the structure and stability of paclitaxel nanocrystals. Int J Pharm. 2010;390(2):242–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Islam MT, Rodriguez-Hornedo N, Ciotti S, Ackermann C. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm Res. 2004;21(7):1192–9.

    Article  CAS  PubMed  Google Scholar 

  32. Hussain A, Samad A, Singh S, Ahsan M, Haque M, Faruk A, et al. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv. 2016;23(2):642–57.

    Article  CAS  PubMed  Google Scholar 

  33. Pandit J, Garg M, Jain NK. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J Liposome Res. 2014;24(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  34. Zheng Y, Ouyang W-Q, Wei Y-P, Syed SF, Hao C-S, Wang B-Z, et al. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study. Int J Nanomedicine. 2016;11:5971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cordery S, Pensado A, Chiu W, Shehab M, Bunge A, Delgado-Charro M, et al. Topical bioavailability of diclofenac from locally-acting, dermatological formulations. Int J Pharm. 2017;529(1-2):55–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lademann J, Schanzer S, Richter H, Meinke MC, Weigmann H-J, Patzelt A. Stripping procedures for penetration measurements of topically applied substances. Percutaneous penetration enhancers drug penetration into/through the skin. Springer. 2017:205–14.

  37. Kaur L, Jain SK, Singh K. Vitamin E TPGS based nanogel for the skin targeting of high molecular weight anti-fungal drug: development and in vitro and in vivo assessment. RSC Adv. 2015;5(66):53671–86.

    Article  CAS  Google Scholar 

  38. Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):456–69.

    Article  CAS  PubMed  Google Scholar 

  39. Lindfors L, Skantze P, Skantze U, Rasmusson M, Zackrisson A, Olsson U. Amorphous drug nanosuspensions. 1. Inhibition of Ostwald ripening. Langmuir. 2006;22(3):906–10.

    Article  CAS  PubMed  Google Scholar 

  40. Ghosh I, Schenck D, Bose S, Ruegger C. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of vitamin E TPGS and nanocrystal particle size on oral absorption. Eur J Pharm Sci. 2012;47(4):718–28.

    Article  PubMed  Google Scholar 

  41. Douroumis D, Fahr A. Stable carbamazepine colloidal systems using the cosolvent technique. Eur J Pharm Sci. 2007;30(5):367–74.

    Article  CAS  PubMed  Google Scholar 

  42. Chen Y, Johnson E, Peng X. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: self-focusing via ripening. J Am Chem Soc. 2007;129(35):10937–47.

    Article  CAS  PubMed  Google Scholar 

  43. Assem M, Khowessah OM, Ghorab D. Nano-crystallization as a tool for the enhancement of beclomethasone dipropionate dermal deposition: formulation, in vitro characterization and ex vivo study. J Drug Deliv Sci Technol. 2019;54:101318.

    Article  Google Scholar 

  44. Sahu BP, Das MK. Formulation, optimization, and in vitro/in vivo evaluation of furosemide nanosuspension for enhancement of its oral bioavailability. J Nanopart Res. 2014;16(4):1–16.

    Article  Google Scholar 

  45. Sun W, Mao S, Shi Y, Li LC, Fang L. Nanonization of itraconazole by high pressure homogenization: stabilizer optimization and effect of particle size on oral absorption. J Pharm Sci. 2011;100(8):3365–73.

    Article  CAS  PubMed  Google Scholar 

  46. Sofie V, Jan V, Ludo F, Patrick A. Microcrystalline cellulose, a useful alternative for sucrose as a matrix former during freeze-drying of drug nanosuspensions–a case study with itraconazole. Eur J Pharm Biopharm. 2008;70(2):590–6.

    Article  Google Scholar 

  47. Patel PJ, Gajera BY, Dave RH. A quality-by-design study to develop Nifedipine nanosuspension: examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes. Drug Dev Ind Pharm. 2018;44(12):1942–52.

    Article  CAS  PubMed  Google Scholar 

  48. Cheney ML, Weyna DR, Shan N, Hanna M, Wojtas L, Zaworotko MJ. Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J Pharm Sci. 2011;100(6):2172–81.

    Article  CAS  PubMed  Google Scholar 

  49. González-Paredes A, Manconi M, Caddeo C, Ramos-Cormenzana A, Monteoliva-Sánchez M, Fadda AM. Archaeosomes as carriers for topical delivery of betamethasone dipropionate: in vitro skin permeation study. J Liposome Res. 2010;20(4):269–76.

    Article  PubMed  Google Scholar 

  50. Zulfakar MH, Abdelouahab N, Heard CM. Enhanced topical delivery and ex vivo anti-inflammatory activity from a betamethasone dipropionate formulation containing fish oil. Inflamm Res. 2010;59(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  51. Leal LB, Cordery SF, Delgado-Charro MB, Bunge AL, Guy RH. Bioequivalence methodologies for topical drug products: in vitro and ex vivo studies with a corticosteroid and an anti-fungal drug. Pharm Res. 2017;34(4):730–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pradhan M, Singh D, Singh MR. Influence of selected variables on fabrication of triamcinolone acetonide loaded solid lipid nanoparticles for topical treatment of dermal disorders. Artificial Cells, Nanomed, Biotechnol. 2016;44(1):392–400.

    Article  CAS  Google Scholar 

  53. Patel RJ, Patel AA, Patel HP. Stabilized amorphous state of riluzole by immersion-rotavapor method with synthesized mesoporous SBA-15 carrier to augment in-vitro dissolution. J Drug Deliv Sci Technol. 2021;1(61):102270.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India, for providing infrastructure facility and support. The authors are thankful to the Department of Science and Technology, Government of India, for financial support.

Funding

This work was financially assisted by the Department of Science and Technology, Government of India, in the form of DST-INSPIRE fellowship to Viral Patel (Inspire code: IF140936 and Grant no. SR/ FST/LSI-607/2014).

Author information

Authors and Affiliations

Authors

Contributions

The authors have contributed in the best of their knowledge in performing the current research study.

Corresponding author

Correspondence to Viral Patel.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V., Mehta, T.A. Betamethasone Dipropionate Nanocrystals: Investigation, Feasibility and In Vitro Evaluation. AAPS PharmSciTech 23, 197 (2022). https://doi.org/10.1208/s12249-022-02346-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02346-1

Keywords

Navigation