Skip to main content

Advertisement

Log in

Formulation and Evaluation of Topical Biodegradable Films Loaded with Levofloxacin Lipid Nanocarriers

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Skin ulcers have increased sharply due to rise in the incidence of obesity and diabetes. This study investigated lipid nanocarriers as a strategy to improve the efficacy of levofloxacin (LV) in penetrating skin. Two surfactant types and different lipid mixtures were used in preparation of lipid nanocarriers. Mean particle size, percentage entrapment efficiency (%EE), in vitro release, and antimicrobial activity were examined. The selected formula was incorporated into a chitosan (CS) film that was subjected to physic-chemical characterization and ex vivo permeation study. The selected formula showed particle size, PDI, and ZP: 80.3 nm, −0.21, and −26 mV, respectively, synchronized with 82.12 %EE. In vitro release study showed slow biphasic release of LV from lipid nanocarriers. The antimicrobial effect illustrated statistically significant effect of lipid nanocarriers on decreasing the minimum effective concentration (MIC) of LV, particularly against E. coli. The optimized nanocarriers’ formula loaded into CS film was clear, colorless, translucent, and smooth in texture. Based on the release profiles, it could be speculated that the CS film loaded with LV nanocarriers can maintain the antibacterial activity for 4 consecutive days. Thus, the local delivery of the drug in a sustained release manner could be predicted to enhance the therapeutic effect. Further clinical studies are strongly recommended.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang W, Lu KJ, Yu CH, Huang QL, Du YZ. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnology. 2019;17(1):82.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lopez-Cervantes J, Escárcega-Galaz AA, SánchezMachado DI, De La Cruz-Mercado JL, Perez-Gómez LE, Ornelas-Aguirre JM. Characterization and efficacy of chitosan membranes in the treatment of skin ulcers. Egypt J Basic Appl Sci. 2019;6(1):195–205.

    Article  Google Scholar 

  3. Westby MJ, Dumville JC, Soares MO, Stubbs N, Norman G. Dressings and topical agents for treating pressure ulcers. Cochrane Database Syst Rev. 2017;6(6):CD011947.

    PubMed  Google Scholar 

  4. Gangawane AK, Bhatt B, Sunmeet M. Skin infections in diabetes: a review. J Diabetes Metab. 2016;7:644.

    Google Scholar 

  5. Negut I, Grumezescu V, Grumezescu AM. Treatment strategies for infected wounds. Molecules. 2018;23(9):2392.

    Article  PubMed Central  Google Scholar 

  6. Pompilio A, De Nicola S, Crocetta V, Guarnieri S, Savini V, Carretto E, et al. New insights in Staphylococcus pseudintermedius pathogenicity: antibiotic-resistant biofilm formation by a human wound-associated strain. BMC Microbiol. 2015;15:109.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Westgate SJ, Cutting K. The role of microbial biofilms in chronic and acute wound. Nursing and Residental Care. 2011;11:518–21.

    Article  Google Scholar 

  8. López-López M, Fernández-Delgado A, Moyá ML, Blanco-Arévalo D, Carrera C, De la Haba RR, et al. Optimized preparation of levofloxacin loaded polymeric nanoparticles. Pharmaceutics. 2019;11(2):57.

    Article  PubMed Central  Google Scholar 

  9. Zafer A, Imam SS, Bukhari SN, Ahmad J, Ali A. Formulation and optimization of levofloxacin loaded chitosan nanoparticles for ocular delivery: in vitro characterization, ocular tolerance and antibacterial activity. Int J Biol Macromol. 2018;108:650–9.

    Article  Google Scholar 

  10. Kumar G, Sharma S, Shafiq N, Khuller GK, Malhotra S. Optimization, in vitro–in vivo evaluation, and short-term tolerability of novel levofloxacin-loaded PLGA nanoparticle formulation. J Pharm Sci. 2012;101(6):2165–76.

    Article  CAS  PubMed  Google Scholar 

  11. Jalvandi J, White M, Gao Y, Truong YB, Padhye R, Kyratzis IL. Slow release of levofloxacin conjugated on silica nanoparticles from poly(ε-caprolactone) nanofibers Int. J Polym Mater. 2017;66:1–8.

    Article  Google Scholar 

  12. Paladini F, Pollini M. Antimicrobial silver nanoparticles for wound healing application: progress and future trends. Materials. 2019;12(16):2540.

    Article  CAS  PubMed Central  Google Scholar 

  13. Adair JH, Parette MP, Altinoglu EI, Kester M. Nanoparticulate alternatives for drug delivery. ACS Nano. 2010;4(9):4967–70.

    Article  CAS  PubMed  Google Scholar 

  14. Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;6:1803–15.

    Article  Google Scholar 

  15. Kalhapure RS, Suleman N, Mocktar C, Seedast N, Govender T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci. 2015;104(3):872–905.

    Article  CAS  PubMed  Google Scholar 

  16. Chang CH, Lin YH, Yeh CL, Chen YC, Chiou SF, Hsu YM, Chen YS, Wang CC. Nanoparticles Incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of Helicobacter pylori. Biomacromolecules. 2010;11(1):133–42.

    Article  CAS  PubMed  Google Scholar 

  17. Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano. 2012;6(5):4279–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jain D, Banerjee R. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J Biomed Mater Res B Appl Biomater. 2008;86(1):105–12.

    Article  PubMed  Google Scholar 

  19. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(1-2):170–84.

    Article  CAS  PubMed  Google Scholar 

  20. Zsikó S, Cutcher K, Kovács A, Budai-Szűcs M, Gácsi A, Baki G, Csányi E, Berkó S. Nanostructured lipid carrier gel for the dermal application of lidocaine: comparison of skin penetration testing methods. Pharmaceutics. 2019;11(7):310.

    Article  PubMed Central  Google Scholar 

  21. Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs - a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113(1-3):151–70.

    Article  CAS  PubMed  Google Scholar 

  22. Jenning V, Schäfer-Korting M, Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release. 2000;66(2-3):115–26.

    Article  CAS  PubMed  Google Scholar 

  23. Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59(6):522–30.

    Article  PubMed  Google Scholar 

  24. Sanna V, Caria G, Mariani A. Effect of lipid nanoparticles containing fatty alcohols having different chain length on the ex vivo skin permeability of Econazole nitrate. Powder Technol. 2010;201:32–6.

    Article  CAS  Google Scholar 

  25. Puglia C, Bonina F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opin on Drug Deliv. 2012;9(4):429–41.

    Article  CAS  Google Scholar 

  26. El-Leithy ES, Abdel-Rashid RS. Lipid nanocarriers for Tamoxifen citrate/coenzyme Q10 dual delivery. J Drug Deliv Sci Technol. 2017;41:239–50.

    Article  CAS  Google Scholar 

  27. Giovino C, Ayensu I, Tetteh J, Boateng JS. Development and characterization of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm. 2012;428(1-2):143–51.

    Article  CAS  PubMed  Google Scholar 

  28. Castro PM, Fonte P, Oliveira A, Madureira R, Sarmento B, Pintado ME. Optimization of two biopolymer-based oral films for the delivery of bioactive molecules. Mater Sci Eng C Mater Biol Appl. 2017;76:171–80.

    Article  CAS  PubMed  Google Scholar 

  29. El-Leithy ES, Shaker DS, Ghorab MK, Abdel-Rashid RS. Evaluation of mucoadhesive hydrogels loaded with diclofenac sodium–chitosan microspheres for rectal administration. AAPS Pharm SciTech. 2010;11(4):1695–702.

    Article  CAS  Google Scholar 

  30. Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, Wang SL. Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine. 2011;6:765–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sadiq AA, Abdul Rassol AA. Formulation and evaluation of silibinin loaded solid lipid nanoparticles for peroral use targeting lower part of gastrointestinal tract. Int J Pharm Pharm Sci. 2014;6:55–67.

    Google Scholar 

  32. Jankie S, Johnson J, Adebayo AS, Pillai GK, Pereira LMP. Efficacy of levofloxacin loaded nonionic surfactant vesicles (niosomes) in a model of Pseudomonas aeruginosa infected Sprague Dawley rats. Adv Pharmacol Pharm Sci. 2020;2020:1–7.

    Article  Google Scholar 

  33. Siafaka P, Okur ME, Ayla S, Er S, Cağlar ES, Okur NU. Design and characterization of nanocarriers loaded with Levofloxacin for enhanced antimicrobial activity; physicochemical properties, in vitro release and oral acute toxicity. Braz J Pharm Sci. 2019;55:1–13.

    Article  Google Scholar 

  34. Batista P, Castro P, Madureira AR, Sarmento B, Pintado M. Development and characterization of chitosan microparticles-in-films for buccal delivery of bioactive peptides. Pharmaceuticals (Basel). 2019;12(1):32.

    Article  CAS  PubMed Central  Google Scholar 

  35. Naik S, Raikar P, Ahmed MG. Formulation and evaluation of chitosan films containing sparfloxacin for the treatment of periodontitis. J Drug Deliv Ther. 2019;9:38–45.

    Article  CAS  Google Scholar 

  36. Parhi R, Suresh P. Formulation optimization and characterization of transdermal film of simvastatin by response surface methodology. Mater Sci Eng C Mater Biol Appl. 2016;58:331–41.

    Article  CAS  PubMed  Google Scholar 

  37. Rani S, Singh N. Formulation and characterization of periodontal films containing Azithromycin and Serratiopeptidase. Asian J Pharm Clin Res. 2018;11:205–9.

    Article  Google Scholar 

  38. Bahri-Najafi R, Tavakoli N, Senemar M, Peikanpour M. Preparation and pharmaceutical evaluation of glibenclamide slow release mucoadhesive buccal film. Res Pharm Sci. 2014;9(3):213–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Neupane R, Boddu SHS, Renukuntla J, Babu RJ, Tiwari AK. Alternatives to biological skin in permeation studies: current trends and possibilities. Pharmaceutics. 2020;12(2):152.

    Article  CAS  PubMed Central  Google Scholar 

  40. Nasr M, Younes H, Abdel-Rashid RS. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Deliv Transl Res. 2020;10(5):1302–13.

    Article  CAS  PubMed  Google Scholar 

  41. Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B: Biointerfaces. 2010;81(2):412–21.

    Article  CAS  PubMed  Google Scholar 

  42. Kelidari HR, Moazeni M, Babaei R, Saeedi M, Akbari J, Parkoohi PI, Nabili M, Gohar AA, Morteza-Semnani K, Nokhodchi A. Improved yeast delivery of fluconazole with a nanostructured lipid carrier system. Biomed Pharmacother. 2017;89:83–8.

    Article  CAS  PubMed  Google Scholar 

  43. Montoto SS, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci. 2020;7:587997.

    Article  CAS  Google Scholar 

  44. El Leithy ES, Abdel-Bar HM, Ali RA. Folate-chitosan nanoparticles triggered insulin cellular uptake and improved in vivo hypoglycemic activity. Int J Pharm. 2019;571:118708.

    Article  PubMed  Google Scholar 

  45. Azmi NA, Hasham R, Ariffin FD, Elgharbawy AA, Salleh HM. Characterization, stability assessment, antioxidant evaluation and cell proliferation activityof virgin coconut oil-based nanostructured lipid carrier loaded with Ficus deltoidea extract. Cosmetics. 2020;7:1–15.

    Article  Google Scholar 

  46. Subramaniam B, Siddik ZH, Nagoor NH. Optimization of nanostructured lipid carriers: understanding the types, designs, and parameters in the process of formulations. J Nanopart Res. 2020;22:141.

    Article  CAS  Google Scholar 

  47. Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharm Cairo Univ. 2015;53:147–59.

    Google Scholar 

  48. Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics. 2020;12(3):288.

    Article  CAS  PubMed Central  Google Scholar 

  49. Sanad RA, Abdelmalak NS, Elbayoomy TS, Badawi AA. Formulation of a novel oxybenzone-loaded nanostructured lipid carriers (NLCs). AAPS PharmSci Tech. 2010;11(4):1684–94.

    Article  CAS  Google Scholar 

  50. Taghipour B, Yakhchali M, Haririan I, Tamaddon AM, Samani SM. The effects of technical and compositional variables on the size and release profile of bovine serum albumin from PLGA based particulate systems. Res Pharm Sci. 2014;9(6):407–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang YC, Wu YT, Huang HY, Yang CS. Surfactant-free formulation of poly (lactic/glycolic) acid nanoparticles encapsulating functional polypeptide: a technical note. AAPS PharmSciTech. 2009;10(4):1263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alves DA, Machado D, Melo A, Carneiro Pereira RF, Severino P, Maria de Hollanda L, et al. Preparation of thermosensitive gel for controlled release of levofloxacin and their application in the treatment of multidrug-resistant bacteria. Biomed Res Int. 2016;2016:1–10.

    Article  CAS  Google Scholar 

  53. Kırımlıoğlu GY, Yazan Y. Formulation and in vitro characterization of polymeric nanoparticles designed for oral delivery of levofloxacin hemihydrate. Eu Int J Sci Tech. 2016;6:655–8.

    Google Scholar 

  54. Eleraky NE, Omar MM, Mahmoud HA, Abou-Taleb HA. Nanostructured lipid carriers to mediate brain delivery of temazepam: design and in vivo study. Pharmaceutics. 2020;12(5):451.

    Article  CAS  Google Scholar 

  55. Vestby LK, Nesse LL. Wound care antiseptics—performance differences against Staphylococcus aureus in biofilm. Acta Vet Scand. 2015;57(1):22.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bessa LJ, Fazii P, Di Giulio M, Cellini L. Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: some remarks about wound infection. Int Wound J. 2015;12(1):47–52.

    Article  PubMed  Google Scholar 

  57. Shazly GA. Ciprofloxacin controlled-solid lipid nanoparticles: characterization, in vitro release, and antibacterial activity assessment. Biomed Res Int. 2017;2120734:1–9.

    Google Scholar 

  58. Karava A, Lazaridou M, Nanaki S, Michailidou G, Christodoulou E, Kostoglou M, Iatrou H, Bikiaris DN. Chitosan derivatives with mucoadhesive and antimicrobial properties for simultaneous nanoencapsulation and extended ocular release formulations of dexamethasone and chloramphenicol drugs. Pharmaceutics. 2020;12(6):594.

    Article  CAS  PubMed Central  Google Scholar 

  59. Angioni E, Lercker G, Ferga NG, Carta G, et al. UV spectral properties of lipids as a tool for their identification. Eur J Lipid Sci Technol. 2002;104(1):59–64.

    Article  CAS  Google Scholar 

  60. Shinde M, Gharge V, Pimple S, Shah M, et al. Effect of penetration enhancer on the in vitro ex vivo permeation of diclofenac gel. Asian J Pharm Clin Res. 2014:255–9.

  61. Takeuchi H, Mano Y, Terasaka S, Sakurai T, Furuya A, Urano H, et al. Usefulness of rat skin as a substitute for human skin in the in vitro skin permeation study. Exp Anim. 2011;60(4):373–84.

    Article  CAS  PubMed  Google Scholar 

  62. Khan G, Yadav SK, Patel RR, Nath G, Bansal M, Mishra B. Development and evaluation of biodegradable chitosan films of metronidazole and levofloxacin for the management of periodontitis. AAPS Pharm SciTech. 2016;17(6):1312–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University for extended instrumental facility in successful accomplishment of the present work.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the experiments; Rania S. Abdel-Rashid: performed the formulations and experiment, supervision, contribution in data analysis, and writing; Eman S. El-leithy: supervision, funding, data analysis, editing; Raghda Abdel-monem: methodology, supervision, contribution in data analysis, writing and drafting manuscript to appear in its final form.

Corresponding author

Correspondence to Rania S. Abdel-Rashid.

Ethics declarations

Ethics Approval and Consent to Participate

Animals experimental protocol was ethically approved by the Animal Research Ethical Committee, Faculty of Pharmacy, Helwan University.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Rashid, R.S., El-leithy, E.S. & Abdel-monem, R. Formulation and Evaluation of Topical Biodegradable Films Loaded with Levofloxacin Lipid Nanocarriers. AAPS PharmSciTech 23, 34 (2022). https://doi.org/10.1208/s12249-021-02189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02189-2

KEY WORDS

Navigation