Skip to main content

Advertisement

Log in

Nanostructured Lipid Carriers as a Novel Strategy for Topical Antifungal Therapy

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Nanostructured lipid carriers (NLC) were developed as an alternative carrier system optimizing limitations found in topical treatments for superficial fungal infections, such as limited permeation through the skin. However, few published studies are focused on standardization and characterization of determinant variables of these lipid nanosystems’ quality. Thus, this systematic review aims to compile information regarding the selection of lipids, surfactants, and preparation method that intimately relates to the final quality of this nanotechnology. For this, the search was carried with the following descriptors: 'nanostructured lipid carriers', 'topical', 'antifungal' separated by the Boolean operators 'and', present in the titles of the databases: Science Direct, Scopus and Pubmed. The review included experimental articles focused on the development of nanostructured lipid carriers targeted for topical application with antifungal activity, published from 2015 to 2021. Review articles, clinical studies, and studies on the development of other nanocarriers intended for other routes of administration were excluded from the study. The research included 26 articles, of which 58% were developed in India and Brazil, 53% published in the years 2019 and 2020. As for the selection of antifungal drugs incorporated into NLCs, the azole class had a preference over other classes, voriconazole being incorporated into 5 of the 26 developed NLC studied. It was also observed a predominance of medium chain triglycerides (MCT) as a liquid lipid and polysorbate 80 as a surfactant. Among other results, this review compiles the influences of each of the variables discussed in the quality parameters of NLCs, in order to guide future research involving the development of this technology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: a translational perspective. Nanomedicine. 2018;7:2023–50.

    Article  Google Scholar 

  2. Nene S, Shah S, Rangaraj N, Mehra NK, Singh PK, Srivastava S. Lipid based nanocarriers: a novel paradigm for topical antifungal therapy. J Drug Deliv Sci Technol. 2021;62:102397.

    Article  CAS  Google Scholar 

  3. Qurt MS, Esentürk I, Tan SB, Erdal MS, Araman A, Güngör S. Voriconazole and sertaconazole loaded colloidal nano-carriers for enhanced skin deposition and improved topical fungal treatment. J Drug Deliv Sci Technol. 2018;48:215–22.

    Article  CAS  Google Scholar 

  4. Waghule T, Rapalli VK, Singhvi G, Manchanda P, Hans N, Dubey SK, Hasnain MS, Nayak AK. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol. 2019;52:303–15.

    Article  CAS  Google Scholar 

  5. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015;5:305–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cola DF, Pasquoto T, Guilger M, de Lima R, Da Silva CMG, Fraceto LF. Sistemas carreadores lipídicos nanoestruturados para ivermectina e metopreno visando controle de parasitas. Quim Nova. 2016;39

  7. Ahmed MM, Fatima M, Anwer K, Ibnouf EO, Kalam MA, Alshamsan A, Aldawsari MF, Alalaiwe A, Ansari MJ. Formulation and in vitro evaluation of topical nanosponge-based gel containing butenafine for the treatment of fungal skin infection. Saudi Pharm J. 2021;29:467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yapar N. Epidemiology and risk factors for invasive candidiasis. Ther Clin RiskManag. 2014;10:95–105.

    Article  Google Scholar 

  9. Lawson S, Arumugam N, Almansour AI, Kumar RS, Thangamani S. Dispiropyrrolidine tethered piperidone heterocyclic hybrids with broad-spectrum antifungal activity against Candida albicans and Cryptococcus neoformans. Bioorg Chem. 2020;100:103865.

    Article  CAS  PubMed  Google Scholar 

  10. Füredi P, Pápay ZE, Kovács K, Kiss BD, Ludányi K, Antal I, Klebovich I. Development and characterization of the voriconazole loaded lipid-based nanoparticles. J Pharm Biomed Anal. 2017;132:184–9.

    Article  PubMed  Google Scholar 

  11. Gupta AK, Mays RR, Foley KA. Topical antifungal agents. comprehensive dermatologic drug therapy (4th Edition): Elsevier; 2021.

  12. Fernandes Campos F. Nanoemulsiones de nistatina para eltratamiento de candidiasis muco-cutáneas. Doctoral Thesis, Universitat de Barcelona. Departament of Pharmacology, 2012. http://diposit.ub.edu/dspace/bitstream/2445/34846/2/FFC_TESIS.pdf. Acessed 19 October 2021.

  13. Falci DR, Pasqualotto AC. Anfotericina B: uma revisão sobre suas diferentes formulações, efeitos adversos e toxicidade. Clin Biomed Res. 2015;35:65–82.

    Article  Google Scholar 

  14. Badea G, et al. Influence of basil oil extract on the antioxidant and antifungal activities of nanostructured carriers loaded with nystatin. C R Chim. 2015;18:668–77.

    Article  CAS  Google Scholar 

  15. Melkoumov A. Nanoformulations de nystatine pour uneefficacité antifongique améliorée. Master’s degree dissertation. Université de Montréal. 2014. https://papyrus.bib.umontreal.ca/xmlui/bitstream/handle/1866/10408/Melkoumov_Alexandre_2013_memoire.pdf?sequence=2&isAllowed=y. Acessed 19 October 2021.

  16. Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur J Pharm Sci. 2013;49:311–22.

    Article  CAS  PubMed  Google Scholar 

  17. Dalla Lana DF, et al. Dermatofitoses: agentes etiológicos, formas clínicas, terapêutica e novas perspectivas de tratamento. Clin Biomed Res. 2016;36(4):230–41.

    Article  Google Scholar 

  18. Ruiz LRB, Chiacchio ND. Manual de conduta nas onicomicoses: diagnóstico e tratamento. Braz Soc Dermathol Hair Nails Dep. 2006:191–201.

  19. Borba-Santos LP, Rodrigues AM, Gagini TB, Fernandes GF, Castro R, de Camargo ZP, Nucci M, LMM B, Ishida K, Rozental S. Susceptibility of Sporothrix brasiliensisis olatesto amphotericin B, azoles, andterbinafine. Med Mycol. 2015;53(2):178–88.

    Article  CAS  PubMed  Google Scholar 

  20. Balfour JA, Faulds D. Terbinafine. Drugs. 1992;43(2):259–84.

    Article  CAS  PubMed  Google Scholar 

  21. Padois K, et al. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil. Int J Pharm. 2011;416(1):300–4.

    CAS  PubMed  Google Scholar 

  22. Lingayat VJ, Zarekar NS, Shendge RS. Solid lipid nanoparticles: a review. Nanosci Nanotechnol Res. 2017;2:67–72.

    Google Scholar 

  23. Mehanna MM, Motawaa AM, Samaha MW. Pharmaceutical particulate carriers: lipid-based carriers. Natl J Physiol Pharm Pharmacol. 2012;2(1):10–22.

    CAS  Google Scholar 

  24. Duarte Junior AP. Preparação de carreadores lipídicos nanoestruturados a partir de cera de carnaúba e óleo de pracaxi contendo dexametasona para tratamento tópico de inflamações cutâneas. Tese (Doutorado)-Federal University of Pernambuco. Post Graduate Program of Pharmaceutical Nanotechnology. Recife, Brazil. 2016.

  25. Steiner D, Bunjes H. Influence of process and formulation parameters on the preparation of solid lipid nanoparticles by dual centrifugation. Int J Pharm: X. 2021;3:100085.

    CAS  Google Scholar 

  26. Shah MK, Khatri P, Vora N, Patel NK, Jain S, Lin S. Lipid nanocarriers: preparation, characterization and absorption mechanism and applications to improve oral bioavailability of poorly water-soluble drugs. In: Biomedical Applications of Nanoparticles. 2019. p. 117–47.

    Chapter  Google Scholar 

  27. Freitas C, Muller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN(TM)) and crystallinity of the lipid phase. Eur J Pharm Biopharm. 1999;147:125–32.

    Article  Google Scholar 

  28. Azar FAN, Pezeshki A, Ghanbarzadeh B, Hamishehkar H, Mohammadi M. Nanostructured lipid carriers: promising delivery systems for encapsulation of food ingredients. J Agric Food Inf. 2020;2:100084.

    Google Scholar 

  29. Lu Y, Qi J, Wu W. Lipid nanoparticles: in vitro and in vivo approaches in drug delivery and targeting. In: Drug Targeting and Stimuli Sensitive Drug Delivery Systems. William Andrew Publishing; 2018. p. 749–83.

    Chapter  Google Scholar 

  30. Attama AA, Momoh MA, Builders PF. Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development. In: Sezer AD, editor. Recent Advances in Novel Drug Carrier Systems, vol. 5. Intech; 2012. p. 107–40.

    Google Scholar 

  31. Chaudhari SP, Dugar RP. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. J Drug Deliv Sci Technol. 2017;41:68–77.

    Article  CAS  Google Scholar 

  32. Shevalkar G, Vavia P. Solidified nanostructured lipid carrier (S-NLC) for enhancing the oral bioavailability of ezetimibe. J Drug Deliv Sci Technol. 2019;53:101211.

    Article  CAS  Google Scholar 

  33. Baek S, Min J, Lee JW. Equilibria of cyclopentane hydrates with varying HLB numbers of sorbitan monoesters in water-in-oil emulsions. Fluid Phase Equilib. 2016;413:41–7.

    Article  CAS  Google Scholar 

  34. Solanki SS, Sarkar B, Dhanwani RK. Microemulsion drug delivery system: for bioavailability enhancement of ampelopsin. ISRN Pharmaceutics. 2012;2012:1–4.

    Article  Google Scholar 

  35. de Sena LWP. Obtenção e caracterização de carreadores lipídicos nanoestruturados a partir de gordura vegetal de murumuru (Astrocaryum murumuru Mart.). Master Program’s Dissertation. Federal University of Pará. Post Graduate Program of Pharmaceutical Sciences. Belém: Brazil. 2016.

  36. Damico FM, Gasparin F, Ioshimoto GL, Igami TZ, Cunha AS, Fialho SL, Liber AM, Young LHY, Ventura DF. Injeção intravítrea de polissorbato 80: Estudo funcional e morfológico. Rev Col Bras Cir. 2017;44:603–11.

    Article  PubMed  Google Scholar 

  37. Passos JS, Martino LC, Dartora VFC, Araujo GB, Ishida K, Lopes LB. Development, skin targeting and antifungal efficacy of topical lipid nanoparticles containing itraconazole. Eur J Pharm Sci. 2020;149:105296.

    Article  CAS  PubMed  Google Scholar 

  38. Wolf M, Klang V, Halper M, Stix C, Heuser T, Kotisch H, Valenta C. Monoacyl-phospatidylcholine nanostructured lipid carriers: influence of lipid and surfactant content on in vitro skin permeation of flufenamic acid and fluconazole. J Drug Deliv Sci Technol. 2017;41:419–30.

    Article  CAS  Google Scholar 

  39. Gomaa E, Fathi HA, Eissa NG, Elsabahy M. Methods for preparation of nanostructured lipid carriers. Methods. 2021; https://doi.org/10.1016/j.ymeth.2021.05.003.

  40. Czajkowska-Konik A, Szekalska M, Winnicka K. Nanostructured lipid carriers: a potential use for skin drug delivery systems. Pharmacol Rep. 2018;71:156–66.

    Article  Google Scholar 

  41. Andrade LM, Rocha KAD, De Sá FAP, Marreto RN, Lima Em Gratieri T, Taveira SF. Voriconazole-loaded nanostructured lipid carriers for ocular drug delivery. Cornea. 2016;35:866–71.

    Article  PubMed  Google Scholar 

  42. Santos GA, Angelo T, Andrade LM, Silva SMM, Magalhães PO, Cunha-Filho M, Gelfuso GM, Taveira SF, Gratieri T. The role of formulation and follicular pathway in voriconazole cutaneous delivery from liposomes and nanostructured lipid carriers. Colloids Surf B: Biointerfaces. 2018;170:341–6.

    Article  CAS  PubMed  Google Scholar 

  43. Mahmood A, Rapalli VK, Gorantl S, Waghule T, Singhvi G. Dermatokinetic assessment of luliconazole-loaded nanostructured lipid carriers (NLCs) for topical delivery: QbD-driven design, optimization, and in vitro and ex vivo evaluations. Drug Deliv Transl Res. 2021; https://doi.org/10.1007/s13346-021-00986-7.

  44. Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71:349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Simão DO, Honorato TD, Gobo GG, Piva HL, Goto PL, Rolim LA, Turrin CO, Blanzat M, Tedesco AC, Siqueira-Moura MP. Preparation and cytotoxicity of lipid nanocarriers containing a hydrophobic flavanone. Colloids Surf A Physicochem Eng Asp. 2020;601:124982.

    Article  Google Scholar 

  46. Jain S, Cherukupalli SK, Mahmood A, Gotantla S, Rapalli VK, Dubey SK, Singhvi G. Emerging nanoparticulate systems: preparation techniques and stimuli responsive release characteristics. J Appl Pharm Sci. 2019;9:130–43.

    Article  CAS  Google Scholar 

  47. Durán V, Grabski E, Hozsa C, Becker J, Yasar H, Monteiro JT, Costa B, Koller N, Lueder Y, Wiegmann B, Brandes G, Kaever V, Lehr CM, Lepenies B, Tampé R, Förster R, Bošnjak B, Furch M, Graalmann T, Kalinke U. Fucosylated lipid nanocarriers loaded with antibiotics efficiently inhibit mycobacterial propagation in human myeloid cells. J Control Release. 2021;334:201–12.

    Article  PubMed  Google Scholar 

  48. Ganesan P, Narayanasamy D. Lipid nanoparticles: different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm. 2017;6:37–56.

    Article  Google Scholar 

  49. Güngör S, Kahraman E. Nanocarriers mediated cutaneous drug delivery. Eur J Pharm Sci. 2021;158:105638.

    Article  PubMed  Google Scholar 

  50. Na YG, Huh HW, Kim MK, Byeon JJ, Han MG, Lee HK, Cho CW. Development and evaluation of a film-forming system hybridized with econazole-loaded nanostructured lipid carriers for enhanced antifungal activity against dermatophytes. ActaBiomaterialia. 2020;101:507–18.

    CAS  Google Scholar 

  51. Miranda M, Cruz MT, Vitorino C, Cabral C. Nanostructuring lipid carriers using Ridolfia segetum (L.) Moris essential oil. Mater Sci Eng C. 2019;103:109804.

    Article  CAS  Google Scholar 

Download references

Funding

This work required access to published articles which were accessed by the institutional login of the Federal University of Piauí. Therefore, this work was supported by Federal University of Piauí.

Author information

Authors and Affiliations

Authors

Contributions

Manuscript’s design, planning, analysis, and writing: Naiane Carvalho Nogueira. Orientation: André Luís Menezes Carvalho. Revision and corrections: Laisa Lis Fontinele de Sá. All authors have approved the submitted final version.

Corresponding author

Correspondence to Naiane Carvalho Nogueira.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 33.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, N.C., de Sá, L.L.F. & de Carvalho, A.L.M. Nanostructured Lipid Carriers as a Novel Strategy for Topical Antifungal Therapy. AAPS PharmSciTech 23, 32 (2022). https://doi.org/10.1208/s12249-021-02181-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02181-w

KEY WORDS

Navigation