Skip to main content
Log in

The Influence of Relative Humidity and Storage Conditions on the Physico-chemical Properties of Inhalation Grade Fine Lactose

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Dry powder inhalers (DPIs) are favorable devices for the delivery of dry formulations to the lungs; still, they largely fail to deliver higher doses of active pharmaceutical ingredient (API) to the lower airways. Addition of fine particles of excipient (fines) to the blend of API and carrier was shown to improve aerosolization performance. Lactose monohydrate is ubiquitous excipient used for this purpose. Lactose exists in a thermodynamically stable crystalline form; however, processes like milling, sieving, or even mixing may induce alteration of crystalline structure and introduce amorphous domains, which could further affect the physico-chemical properties of the material. Therefore, the aim of this work is a detailed characterization of two commercially available types of inhalation grade fine lactose powders (Inhalac 400 and Inhalac 500) prepared using different air-jet milling parameters, with a focus on impact of storage conditions on material properties. We found that the different milling parameters resulted in variable particle size distribution (PSD), and thus surface areas, variable initial amorphous content, cohesivity, flowability, and moisture sorption of materials. In addition, exposure of fine powders to higher humidity reduced the amorphous content present in the materials, but also affected agglomeration tendency and dispersion behavior of both powders. We believe the obtained findings to be important for the aerosolization performance of carrier-based DPIs containing fines and thus need to be duly considered during formulation development.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kou X, Chan LW, Steckel H, Heng PWS. Physico-chemical aspects of lactose for inhalation. Adv Drug Deliv Rev. 2012 [cited 2014 Nov 24];64(3):220–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22123598.

  2. Buckton G, Darcy P. Water mobility in amorphous lactose below and close to the glass transition temperature. Int J Pharm. 1996;136(1–2):141–6.

    Article  CAS  Google Scholar 

  3. Kaialy W, Alhalaweh A, Velaga SP, Nokhodchi A. Influence of lactose carrier particle size on the aerosol performance of budesonide from a dry powder inhaler. Powder Technol. 2012;227:74–85.

    Article  CAS  Google Scholar 

  4. Mathlouthi M, Roge B. Water vapour sorption isotherms and the caking of food powders. Food Chem. 2003;82:61–71.

    Article  CAS  Google Scholar 

  5. Kinnunen H, Hebbink G, Peters H, Shur J, Price R. An investigation into the effect of fine lactose particles on the fluidization behaviour and aerosolization performance of carrier-based dry powder inhaler formulations. 2014.

  6. Steckel H, Mu BW. In vitro evaluation of dry powder inhalers II : influence of carrier particle size and concentration on in vitro deposition. Int J Pharm. 1997;154:31–7.

    Article  CAS  Google Scholar 

  7. Louey MD, Stewart PJ. Particle interactions involved in aerosol dispersion of ternary interactive mixtures. Pharm Res. 2002;19(10):1524–31.

    Article  CAS  Google Scholar 

  8. Hertel M, Schwarz E, Kobler M, Hauptstein S, Steckel H, Scherließ R. Powder flow analysis: a simple method to indicate the ideal amount of lactose fines in dry powder inhaler formulations. Int J Pharm. 2018;535(1–2):59–67. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378517317310323.

  9. Zeng XM, Martin GP, Marriott C, Pritchard J. Lactose as a carrier in dry powder formulations: the influence of surface characteristics on drug delivery. J Pharm Sci. 2001;90(9):1424–34.

    Article  CAS  Google Scholar 

  10. Carpin M, Bertelsen H, Bech JK, Jeantet R, Risbo J, Schuck P. Caking of lactose: a critical review. Trends Food Sci Technol. 2016;2016(53):1–12.

    Article  Google Scholar 

  11. Steckel H, Markefka P, TeWierik H, Kammelar R. Functionality testing of inhalation grade lactose. Eur J Pharm Biopharm. 2004;57(3):495–505.

    Article  CAS  Google Scholar 

  12. Moisture determination in lactose monohydrate with a Halogen Moisture Analyzer. Metler Tolledo Method Datascheet.

  13. Jaffari S, Forbes B, Collins E, Barlow DJ, Martin GP, Murnane D. Rapid characterisation of the inherent dispersibility of respirable powders using dry dispersion laser diffraction. Int J Pharm. 2013;447(1–2):124–31. Available from: https://doi.org/10.1016/j.ijpharm.2013.02.034.

  14. Brunauer S, Emmet P, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60(1):309–19.

    Article  CAS  Google Scholar 

  15. Freeman R. Measuring the flow properties of consolidated, conditioned and aerated powders — a comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007;174(1–2):25–33.

    Article  CAS  Google Scholar 

  16. Freeman R, Fu X. Characterisation of powder bulk, dynamic flow and shear properties in relation to die filling. 2008;51(3).

  17. Zellnitz S, Pinto JT, Brunsteiner M, Schroettner H, Khinast J, Paudel A. Tribo-charging behaviour of inhalable Mannitol blends with salbutamol sulphate. Pharm Res. 2019;36(6).

  18. Salameh AK, Mauer LJ, Taylor LS. Deliquescence lowering in food ingredient mixtures. J Food Sci. 2006;71(1).

  19. Bronlund J, Paterson T. Moisture sorption isotherms for crystalline, amorphous and predominantly crystalline lactose powders. Int Dairy J. 2004;14(3):247–54.

    Article  CAS  Google Scholar 

  20. Altamimi MJ, Wolff K, Nokhodchi A, Martin GP, Royall PG. Variability in the α and β anomer content of commercially available lactose. Int J Pharm. 2019;555(October 2018):237–49.

    Google Scholar 

  21. Alzoubi T, Martin GP, Barlow DJ, Royall PG. Stability of α-lactose monohydrate: the discovery of dehydration triggered solid-state epimerization. Int J Pharm. 2021;604(February):120715.

    Article  CAS  Google Scholar 

  22. Caron V, Willart JF, Lefort R, Derollez P, Dande F, Descamps M. Solid state amorphization kinetic of alpha lactose upon mechanical milling. Carbohydr Res. 2011;346(16):2622–8.

    Article  CAS  Google Scholar 

  23. Listiohadi Y, Hourigan JA, Sleigh RW, Steele RJ. Thermal analysis of amorphous lactose and σ-lactose monohydrate. Dairy Sci Technol. 2009;89(1):43–67.

    Article  CAS  Google Scholar 

  24. Cordts E, Steckel H. Capabilities and limitations of using powder rheology and permeability to predict dry powder inhaler performance. Eur J Pharm Biopharm. 2012 [cited 2014 Nov 5];82(2):417–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22902789.

  25. Carpin M, Bertelsen H, Dalberg A, Bech JK, Risbo J, Schuck P, et al. How does particle size influence caking in lactose powder? J Food Eng. 2017;209:61–7.

    Article  CAS  Google Scholar 

  26. Podczeck F, Newton JM, James MB. Influence of relative humidity of storage air on the adhesion and autoadhesion of micronized particles to particulate and compacted powder surfaces. J Colloid Interface Sci. 1997;187(2):484–91.

    Article  CAS  Google Scholar 

  27. Pazesh S, Persson AS, Berggren J, Alderborn G. Effect of milling on the plastic and the elastic stiffness of lactose particles. Eur J Pharm Sci. 2018;114(November 2017):138–45.

    Google Scholar 

  28. Bronlund J. The modelling of caking in bulk lactose : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Process and Environmental Technology at Massey University. Massey University; 1997.

  29. Listiohadi YD, Hourigan JA, Sleigh RW, Steele RJ. Effect of milling on the caking behaviour of lactose. Aust J Dairy Technol. 2005;60(3):214–24.

    CAS  Google Scholar 

  30. Murtomaa M, Harjunen P, Mellin V, Lehto VP, Laine E. Effect of amorphicity on the triboelectrification of lactose powder. J Electrostat. 2002;56(1):103–10.

    Article  CAS  Google Scholar 

  31. Knorr N. Squeezing out hydrated protons: low-frictional-energy triboelectric insulator charging on a microscopic scale. AIP Adv. 2011;1(2).

  32. Kaialy W. A review of factors affecting electrostatic charging of pharmaceuticals and adhesive mixtures for inhalation. Int J Pharm. 2016;503:262–76.

    Article  CAS  Google Scholar 

  33. Schella A, Herminghaus S, Schröter M. Influence of humidity on tribo-electric charging and segregation in shaken granular media. Soft Matter. 2017;13(2):394–401.

    Article  CAS  Google Scholar 

  34. Rowley G, Mackin LA. The effect of moisture sorption on electrostatic charging of selected pharmaceutical excipient powders. Powder Technol. 2003;136:50–8.

    Article  Google Scholar 

  35. Dobson DP, Yanez E, Lubach JW, Stumpf A, Pellet J, Tso J. Utilizing solid-state techniques and accelerated conditions to understand particle size instability in inhaled drug substances. J Pharm Sci. 2021;10(8):3037–46.

    Article  Google Scholar 

Download references

Funding

This study was funded by the Austrian COMET Programme under the auspices of the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family and Youth (BMWFJ), and the State of Styria (Styrian Funding Agency [SFG]). COMET is managed by the Austrian Research Promotion Agency (FFG).

Author information

Authors and Affiliations

Authors

Contributions

Milica Stankovic-Brandl—conception and design of the work, the analysis and interpretation of the data, drafting of the manuscript. Sarah Zellnitz—interpretation of the data, critical revision of the manuscript, drafting the chapter related to charge. Paul Wirnsberger—experimental execution of part of the data, data analysis. Mirjam Kobler—revision of the manuscript. Amrit Paudel—conception and design, supervision, data interpretation, revision, and corrections.

Corresponding author

Correspondence to Amrit Paudel.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 419 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stankovic-Brandl, M., Zellnitz, S., Wirnsberger, P. et al. The Influence of Relative Humidity and Storage Conditions on the Physico-chemical Properties of Inhalation Grade Fine Lactose. AAPS PharmSciTech 23, 1 (2022). https://doi.org/10.1208/s12249-021-02159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02159-8

KEY WORDS

Navigation