Skip to main content

Advertisement

Log in

Amalgamation of Solid Dispersion and Melt Adsorption Technique: Improved In Vitro and In Vivo Performance of Ticagrelor Tablets

  • Research Article
  • Theme: Advancements in Amorphous Solid Dispersions to Improve Bioavailability
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Ticagrelor (TG) suffers from low peroral bioabsorption (36%) due to P-gp efflux and poor solubility (10 µg/mL). TG solid dispersion adsorbates (TG-SDAs) were formulated using an amalgamation of solid dispersion and melt adsorption techniques which were simple, economic, scalable, and solvent-free. FTIR indicated no incompatibility between drug and excipients. DSC, XRD, and SEM suggested a reduction in TG crystallinity. Q30min from TG-SUSP and TG-conventional tablets was only 2.30% and 6.59% respectively whereas TG-SDA-based tablets exhibited a significantly higher drug release of 86.47%. Caco-2 permeability studies showed 3.83-fold higher permeability of TG from TG-SDAs. TG-SDA-based tablets exhibited relative bioavailability of 748.53% and 153.43% compared to TG-SUSP and TG-conventional tablets respectively in rats. TG-SDA-based tablets were devoid of any cytotoxicity as indicated by MTT assay and exhibited better antiplatelet activity in rats. Enhanced oral bioavailability of TG-SDAs can be attributed to inhibition of P-gp efflux by PEG 4000, increased wettability, and reduced crystallinity of drug leading to improved drug solubility and dissolution. Improved bioabsorption results in a reduction of dose, cost of therapy as well as dose-related side effects. Thus, SDAs can be considered a promising and scalable approach for the improvement of dissolution rate and solubility of TG. TG-SDAs can be translated to an effective and safe dosage form, whereby its rapid onset of action promotes the prevention of heart attack, stroke, and related ill events in individuals with the acute coronary syndrome. However, scale-up, validation, and clinical-studies are necessary for confirmation of the proof-of-concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bajracharya R, Song JG, Back SY, et al. Recent Advancements in non-invasive formulations for protein drug delivery. Comput Struct Biotechnol J. 2019;17:1290–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–53.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kumar S, Singh P. Various techniques for solubility enhancement: an overview. Pharma Innov J. 2016;5:23–8.

    Google Scholar 

  4. Arunkumar N, Deecaraman M, Rani C, et al. Preparation and solid state characterization of atorvastatin nanosuspensions for enhanced solubility and dissolution. Int J PharmTech Res. 2009;1:1725–30.

    CAS  Google Scholar 

  5. Shah H, Shah V, Bhutani S, et al. Dissolution improvement of nebivolol hydrochloride using solid dispersion adsorbate technique. Asian J Pharm. 2015;9:49–55.

    Article  CAS  Google Scholar 

  6. Aguiar AJ, Zelmer JE. Dissolution behavior of polymorphs of chloramphenicol palmitate and mefenamic acid. J Pharm Sci. 1969;58:983–7.

    Article  CAS  PubMed  Google Scholar 

  7. Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules. 2015;20:18759–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stella VJ, Nti-Addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev. 2007;59:677–94.

    Article  CAS  PubMed  Google Scholar 

  9. Hamed R, Awadallah A, Sunoqrot S, et al. pH-dependent solubility and dissolution behavior of carvedilol—case example of a weakly basic BCS class II drug. AAPS PharmSciTech. 2016;17:418–26.

    Article  CAS  PubMed  Google Scholar 

  10. Boyd BJ, Bergström CAS, Vinarov Z, et al. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci. 2019;137:1–27.

    Article  Google Scholar 

  11. Sruti J, Niranjan Patra C, Swain S, et al. Improvement in the dissolution rate and tableting properties of cefuroxime axetil by melt-granulated dispersion and surface adsorption. Acta Pharm Sin B. 2013;3:113–22.

    Article  Google Scholar 

  12. Naik NG, Sunder SR, Manchikanti Sk. A promising technique to improve the solubility by liquisolid compaction technology. J Drug Deliv Ther. 2018;8:56–61.

    Article  Google Scholar 

  13. Afifi S. Solid dispersion approach improving dissolution rate of Stiripentol: a novel antiepileptic drug. Iran J Pharm Res. 2015;14:1001–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Maghsoodi M, Kiafar F. Co-precipitation with PVP and agar to improve physicomechanical properties of ibuprofen. Iran J Basic Med Sci. 2013;16:627–34.

    Google Scholar 

  15. Van NH, Park C, Oh E, et al. Improving the dissolution rate of a poorly water-soluble drug via adsorption onto pharmaceutical diluents. J Drug Deliv Sci Technol. 2016;35:146–54.

    Article  Google Scholar 

  16. Saharan VA, Choudhury PK. Dissolution rate enhancement of gliclazide by ordered mixing. Acta Pharm. 2011;61:323–34.

    Article  CAS  PubMed  Google Scholar 

  17. Chella N, Shastri N, Tadikonda RR. Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan. Acta Pharm Sin B. 2012;2:502–8.

    Article  Google Scholar 

  18. Shanmuga Priya A, Sivakamavalli J, Vaseeharan B, et al. Improvement on dissolution rate of inclusion complex of Rifabutin drug with β-cyclodextrin. Int J Biol Macromol. 2013;62:472–80.

    Article  CAS  PubMed  Google Scholar 

  19. Saharan VA, Kukkar V, Kataria M, et al. Dissolution enhancement of drugs. Part I: Technologies and effect of carriers. Int J Health Res. 2009;2:107–24.

    Article  CAS  Google Scholar 

  20. Kazi M. Lipid‐based nano‐delivery for oral administration of poorly water soluble drugs (PWSDs): design, optimization and in-vitro assessment. Chapter 3 from Advanced Technology for Delivering Therapeutics. Published by Intech 2017; 31–51.

  21. Vasa DM, Dalal N, Katz JM, Roopwani R, Nevrekar A, Patel H, Buckner IS, Wildfong PLD. Physical characterization of drug:polymer dispersion behavior in polyethylene glycol 4000 solid dispersions using a suite of complementary analytical techniques. J Pharm Sci. 2014;103(9):2911–23.

    Article  CAS  PubMed  Google Scholar 

  22. Craig DQ. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231(2):131–44.

    Article  CAS  PubMed  Google Scholar 

  23. Serajuddin AT. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–66.

    Article  CAS  PubMed  Google Scholar 

  24. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  25. Nikam VK, Shete SK, Khapare JP. Most promising solid dispersion technique of oral dispersible tablet. Beni-Suef Univ J Basic Appl Sci. 2020;9:62.

    Article  Google Scholar 

  26. Teng R, Oliver S, Hayes MA, et al. Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab Dispos. 2010;38:1514–21.

    Article  CAS  PubMed  Google Scholar 

  27. Na YG, Pham TMA, Byeon JJ, et al. Development and evaluation of TPGS/PVA-based nanosuspension for enhancing dissolution and oral bioavailability of ticagrelor. Int J Pharm. 2020;581:119287.

    Article  CAS  PubMed  Google Scholar 

  28. Byeon J, Son G, Jeon S, et al. Strategic approach to developing a self- microemulsifying drug delivery system to enhance antiplatelet activity and bioavailability of ticagrelor. Int J Nanomed. 2019;1193–1212.

  29. Inam M, Wu J, Shen J, et al. Preparation and characterization of novel pharmaceutical co-crystals: ticagrelor with nicotinamide. Curr Comput-Aided Drug Des. 2018;8(9):336.

    Google Scholar 

  30. Bayoumi AA. Enhancement of solubility of a poorly soluble antiplatelet aggregation drug by cogrinding technique. Asian J Pharm Clin Res. 2018;11(10):340–4.

    Article  CAS  Google Scholar 

  31. Kim SJ, Lee HK, Na YG, et al. A novel composition of ticagrelor by solid dispersion technique for increasing solubility and intestinal permeability. Int J Pharm. 2019;555:11–8.

    Article  CAS  PubMed  Google Scholar 

  32. Kim Y, Chen J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science. 2018;359:915–9.

    Article  CAS  PubMed  Google Scholar 

  33. Dua K, Pabreja K, Ramana MV, et al. Preparation, characterization, and in-vitro evaluation of aceclofenac PVP-solid dispersions. J Dispers Sci Technol. 2011;32:1151–7.

    Article  CAS  Google Scholar 

  34. Dua K, Pabreja K, Ramana MV. Enhancement of dissolution behavior of aceclofenac by complexation with β-cyclodextrin-choline dichloride coprecipitate. J Dispers Sci Technol. 2011;32:1477–84.

    Article  CAS  Google Scholar 

  35. Lyn L, Sze H, Rajendran A, et al. Crystal modifications and dissolution rate of piroxicam. Acta Pharm. 2011;61:391–402.

    Article  CAS  PubMed  Google Scholar 

  36. Gupta MK, Tseng YC, Goldman D, et al. Hydrogen bonding with adsorbent during storage governs drug dissolution from solid-dispersion granules. Pharm Res. 2002;19:1663–72.

    Article  CAS  PubMed  Google Scholar 

  37. Mahajan A, Surti N, Koladiya P. Solid dispersion adsorbate technique for improved dissolution and flow properties of lurasidone hydrochloride: characterization using 32 factorial design. Drug Dev Ind Pharm. 2018;44:463–71.

    Article  CAS  PubMed  Google Scholar 

  38. Vojinović T, Medarević D, Vranić E, et al. Development of ternary solid dispersions with hydrophilic polymer and surface adsorbent for improving dissolution rate of carbamazepine. Saudi Pharm J. 2018;26:725–32.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kumria R, Al-Dhubiab BE, Shah J, et al. Formulation and evaluation of chitosan-based buccal bioadhesive films of zolmitriptan. J Pharm Innov. 2018;13:133–43.

    Article  Google Scholar 

  40. Takeichi Y, Shimooka T, Yamabe K, et al. Improvement of solubility and oral bioavailability of a poorly water-soluble drug, TAS-301, by its melt-adsorption on a porous calcium silicate. J Pharm Sci. 2002;91:362–70.

    Article  PubMed  Google Scholar 

  41. Jacob S, Shirwaikar A, Nair A. Preparation and evaluation of fast-disintegrating effervescent tablets of glibenclamide. Drug Dev Ind Pharm. 2009;35:321–8.

    Article  CAS  PubMed  Google Scholar 

  42. Shah RB, Tawakkul MA, Khan MA. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech. 2008;9:250–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Govedarica B, Injac R, Dreu R, et al. Formulation and evaluation of immediate release tablets with different types of paracetamol powders prepared by direct Compression. African J Pharm Pharmacol. 2011;5:31–41.

    Article  CAS  Google Scholar 

  44. US Pharmacopeia. Tablets Compendial tests. United States Pharmacop. 2010;5637–5640.

  45. Saker A, Cares-Pacheco MG, Marchal P, et al. Powders flowability assessment in granular compaction: what about the consistency of Hausner ratio? Powder Technol. 2019;354:52–63.

    Article  CAS  Google Scholar 

  46. Ganesan V, Rosentrater KA, Muthukumarappan K. Flowability and handling characteristics of bulk solids and powders - a review with implications for DDGS. Biosyst Eng. 2008;101:425–35.

    Article  Google Scholar 

  47. Kumar C, Kumar M, Saini V, et al. Dissolution method development and validation for combination dosage form of telmisartan and nebivolol hydrochloride tablets using UV spectrophotometric method. Res J Pharm Technol. 2019;12:2742–7.

    Article  Google Scholar 

  48. Rajesh A, Manmeet K, Sangeeta A. Formulation and evaluation of fast dissolving tablet of pioglitazone. Res J Pharm Technol. 2012;5:817–21.

    Google Scholar 

  49. Shah P, Sarolia J, Vyas B, Wagh P, Kaul A, Mishra AK. PLGA Nanoparticles for nose to brain delivery of clonazepam: formulation, optimization by 32 factorial design, in-vitro and in-vivo evaluation. Curr Drug Deliv. 2020. https://doi.org/10.2174/1567201817666200708115627.

  50. Borderwala K, Swain G, Mange N, Gandhi J, Lalan M, Singhvi G, Shah P. Optimization of solid lipid nanoparticles of ezetimibe in combination with simvastatin using quality by design (QbD). Nanosci Nanotechnol Asia. 2020;10(4):404–18.

    Article  CAS  Google Scholar 

  51. Naik B, Gandhi J, Shah P, Naik H, Sarolia J. Asenapine Maleate Loaded Solid Lipid Nanoparticles for Oral Delivery. Int Res J Pharm. 2017;8:45–53.

    Article  CAS  Google Scholar 

  52. Pathak B, Raghav M, Thakkar A, Vyas B, Shah P. Enhanced oral bioavailability of etodolac by the liquisolid compact technique: optimisation, in-vitro and in-vivo evaluation. Curr Drug Deliv. 2021;18(4):471–86.

    Article  CAS  PubMed  Google Scholar 

  53. Nair AB, Al-Dhubiab BE, Shah J, et al. Development and evaluation of palonosetron loaded mucoadhesive buccal films. J Drug Deliv Sci Technol. 2018;47:351–8.

    Article  CAS  Google Scholar 

  54. Shah H, Nair AB, Shah J, et al. Proniosomal gel for transdermal delivery of lornoxicam: optimization using factorial design and in-vivo evaluation in rats. Daru. 2019;27:59–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao YM, Zheng ZB, Li S. Quantification of flupirtine maleate polymorphs using X-ray powder diffraction. Chinese Chem Lett. 2016;27:1666–72.

    Article  Google Scholar 

  56. Pilli R, Pradesh A. Etodolac dissolution improvement by preparation of solid dispersions. Int J Pharm Sci Res. 2014;5:4774–91.

    Google Scholar 

  57. Mohamed JMM, Alqahtani A, Ahmad F, Krishnaraju V, Kalpana K. Stoichiometrically governed curcumin solid dispersion and its cytotoxic evaluation on colorectal adenocarcinoma cells. Drug Des Devel Ther. 2020;14:4639–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Choi JS, Cho NH, Kim DH, et al. Comparison of paclitaxel solid dispersion and polymeric micelles for improved oral bioavailability and in-vitro anti-cancer effects. Mater Sci Eng C. 2019;100:247–59.

    Article  CAS  Google Scholar 

  59. Shah P, Chavda K, Vyas B, Patel S. Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: role of P-gp inhibition. Drug Deliv Transl Res. 2021;11(3):1166–85.

    Article  CAS  PubMed  Google Scholar 

  60. Chang CW, Wong CY, Wu YT, et al. Development of a solid dispersion system for improving the oral bioavailability of resveratrol in rats. Eur J Drug Metab Pharmacokinet. 2017;42:239–49.

    Article  CAS  PubMed  Google Scholar 

  61. Sugidachi A, Asai F, Ogawa T, et al. The in-vivo pharmacological profile of CS-747, a novel antiplatelet agent with platelet ADP receptor antagonist properties. Br J Pharmacol. 2000;129:1439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang YY, Tang ZY, Dong M, et al. Inhibition of platelet aggregation by polyaspartoyl L-arginine and its mechanism. Acta Pharmacol Sin. 2004;25:469–73.

    PubMed  Google Scholar 

  63. Mekhfi H, El HM, Legssyer A, et al. Platelet anti-aggregant property of some Moroccan medicinal plants. J Ethnopharmacol. 2004;94:317–22.

    Article  PubMed  Google Scholar 

  64. Brown EW. © 1962 Nature Publishing Group. Nat Int J Sci. 1962;196:1048–50.

    CAS  Google Scholar 

  65. Narang AS, Srivastava AK. Evaluation of solid dispersions of Clofazimine. Drug Dev Ind Pharm. 2002;28(8):1001–13.

    Article  CAS  PubMed  Google Scholar 

  66. Lavra ZMM, Pereira de Santana D, Ré MI. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus. Drug Dev Ind Pharm. 2017;43:42–54.

    Article  CAS  PubMed  Google Scholar 

  67. Lee HJ, Kim JY, Park SH, et al. Controlled-release oral dosage forms containing nimodipine solid dispersion and hydrophilic carriers. J Drug Deliv Sci Technol. 2017;37:28–37.

    Article  CAS  Google Scholar 

  68. Taokaew S, Ofuchi M, Kobayashi T. Chitin biomass-nifedipine amorphous solid dispersion for enhancement of hydrophobic drug dissolution in aqueous media. Sustain Chem Pharm. 2020;17:100284.

    Article  Google Scholar 

  69. Jo K, Cho JM, Lee H, et al. Enhancement of aqueous solubility and dissolution of celecoxib through phosphatidylcholine-based dispersion systems solidified with adsorbent carriers. Pharmaceutics. 2019;11:1–14.

    Article  CAS  Google Scholar 

  70. Hoppe K, Sznitowska M. The effect of polysorbate 20 on solubility and stability of candesartan cilexetil in dissolution media. AAPS PharmSciTech. 2014;15:1116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gupta MK, Goldman D, Bogner RH, et al. Enhanced drug dissolution and bulk properties of solid dispersions granulated with a surface adsorbent. Pharm Dev Technol. 2001;6:563–72.

    Article  CAS  PubMed  Google Scholar 

  72. Kapsi SG, Ayres JW. Processing factors in development of solid solution formulation of itraconazole for enhancement of drug dissolution and bioavailability. Int J Pharm. 2001;229:193–203.

    Article  CAS  PubMed  Google Scholar 

  73. Chutimaworapan S, Ritthidej GC, Yonemochi E, et al. Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Dev Ind Pharm. 2000;26:1141–50.

    Article  CAS  PubMed  Google Scholar 

  74. Wen T, Niu B, Wu Q, et al. Fenofibrate solid dispersion processed by hot-melt extrusion: elevated bioavailability and its cell transport mechanism. Curr Drug Deliv. 2019;16:538–47.

    Article  PubMed  Google Scholar 

  75. Dobesh PP, Oestreich JH. Ticagrelor: pharmacokinetics, pharmacodynamics, clinical efficacy, and safety. Pharmacotherapy. 2014;34(10):1077–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nylander S, Femia EA, Scavone M, Berntsson P, Asztély AK, Nelander K, Cattaneo M. Ticagrelor inhibits human platelet aggregation via adenosine in addition to P2Y12 antagonism. J Thromb Haemost. 2013;11(10):1867–76.

    Article  CAS  PubMed  Google Scholar 

  77. Fule R, Amin P. Development and evaluation of lafutidine solid dispersion via hot melt extrusion: Investigating drug-polymer miscibility with advanced characterisation. Asian J Pharm Sci. 2014;9(2):92–106.

    Article  Google Scholar 

Download references

Funding

This study is funded by the Maliba Pharmacy College.

Author information

Authors and Affiliations

Authors

Contributions

Mukesh Yadav: data collection; Jayant Sarolia: data collection; Manisha Lalan: draft manuscript preparation; Shubhada Mangrulkar Bhavin Vyas: analysis and interpretation of results; Bhavin Vyas: study conception and design; Pranav Shah: study conception and design. All the authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Pranav Shah.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Sarolia, J., Vyas, B. et al. Amalgamation of Solid Dispersion and Melt Adsorption Technique: Improved In Vitro and In Vivo Performance of Ticagrelor Tablets. AAPS PharmSciTech 22, 257 (2021). https://doi.org/10.1208/s12249-021-02138-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02138-z

KEY WORDS

Navigation