Skip to main content
Log in

Piperine-Loaded Glycyrrhizic Acid- and PLGA-Based Nanoparticles Modified with Transferrin for Antitumor

Piperine-Loaded Glycyrrhizic Acid- and PLGA-Based Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

A Correction to this article was published on 15 November 2021

This article has been updated

Abstract

The purpose of this study was to enhance the antitumor effect of piperine by constructing the nanoparticles modified with transferrin (Tf-PIP-NPs) and evaluating their efficacy in vitro and in vivo. The Tf-PIP-NPs were prepared by the solvent evaporation method, and their properties were characterized. The effects of Tf-PIP-NPs on cytotoxicity, cell uptake, apoptosis, and mitochondrial membrane potential were evaluated in HepG2 cells, MDA-MB-231 cells, and 4T1 cells. In a 4T1 tumor-bearing mouse model, the antitumor efficacy of Tf-PIP-NPs was assessed in terms of tumor volumes, changes in body weight, HE staining, and immunohistochemical analysis. With a mean particle size of 112.2 ± 1.27 nm, the zeta potential of (− 28.0 ± 1.6 mV) Tf-PIP-NPs were rapidly internalized by tumor cells after 1 h through the transferrin receptor (TfR)-mediated endocytosis pathway, significantly inducing cellular apoptosis and mitochondrial membrane potential loss. Although Tf-PIP-NPs had no significant difference with PIP-NPs in tumor volume inhibition due to the presence of tumor microenvironment, it could significantly upregulate the expression of related pro-apoptotic proteins and induce tumor necrosis. We used the self-assembly properties of glycyrrhizic acid (GL) and polymer-PLGA to encapsulate piperine and modified with the transferrin, which provided a promising approach to improve the antitumor efficacy for anticarcinogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS. Piperine a review of its biological effects. Phytother Res. 2021;35(2):680–700.

    Article  CAS  PubMed  Google Scholar 

  2. Srinivasan K. Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr. 2007;47(8):735–48.

    Article  CAS  PubMed  Google Scholar 

  3. Hanyu Chen, Hongqing Sheng, Yushuo Zhao, Guanghui Zhu. Piperine inhibits cell proliferation and induces apoptosis of human gastric cancer cells by downregulating phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Med Sci Monit. 2020;26:928403.

    Google Scholar 

  4. Greenshields AL, Doucette CD, Sutton KM, Madera L, Annan H, Yaffe PB, et al. Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett. 2015;357(1):129–40.

    Article  CAS  PubMed  Google Scholar 

  5. Shaheer K, Somashekarappa HM, Lakshmanan MD. Piperine sensitizes radiation resistant cancer cells towards radiation and promotes intrinsic pathway of apoptosis. J Food Sc. 2020;85(11):4070–9.

    Article  CAS  Google Scholar 

  6. Jian Z, Xiaobing Z, Hengyuan Li, Binghao Li, Lingling S, Tao X, et al. Piperine inhibits proliferation of human osteosarcoma cells via G2/M phase arrest and metastasis by suppressing MMP-2/-9 expression. Int Immunopharmacol. 2015;24(1):50–8.

    Article  Google Scholar 

  7. Doucette DC, Hilchie AL, Liwski R, Hoskin DW. Piperine, a dietary phytochemical, inhibits angiogenesi. J Nutr Biochem. 2013;24(1):231–9.

    Article  CAS  PubMed  Google Scholar 

  8. Casey SC, Amedei A, Aquilano K, Azmi AS, Benencia F, Bhakta D, et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol. 2015;35 Suppl(Suppl):S199–223.

  9. Chavarria D, Fernandes C, Silva V, Silva C, Gil-Martins E, Soares P, et al. Design of novel monoamine oxidase-B inhibitors based on piperine scaffold: structure-activity-toxicity drug-likeness and efflux transport studies. Eur J Med Chem. 2020;185:111770.

    Article  CAS  PubMed  Google Scholar 

  10. Weiwei Wu, Li W, Wang Lingling Zu, Yuangang WS, Peiyan L, et al. Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells. Int J Nanomedicine. 2018;13:5469–83.

    Article  Google Scholar 

  11. Odetade David F, Vladisavljevic GT. Microfluidic fabrication of hydrocortisone nanocrystals coated with polymeric stabilisers. Micromachines. 2016;7(12):263.

    Google Scholar 

  12. Madani F, Esnaashari SS, Bergonzi MC, Webster TJ, Younes HM, et al. Paclitaxel methotrexate co loaded PLGA nanoparticles in glioblastoma treatment formulation development and in vitro antitumor activity evaluation. Life Sci. 2020;256:117943.

    Article  CAS  PubMed  Google Scholar 

  13. Abe K, Zhao L, Periasamy A, Intes X, Barroso M. Non invasive in vivo imaging of near infrared labeled transferrin in breast cancer cells and tumors using fluorescence lifetime FRET. PLoS One. 2013;8(11):e80269.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huifang P, Hongwei J, Huiqin Z, Heqing H. Enhanced antitumor efficacy of cisplatin for treating ovarian cancer in vitro and in vivo via transferrin binding. Oncotarget. 2017;8(28):45597–611.

    Article  Google Scholar 

  15. Selyutina OY, Polyakov NE. Glycyrrhizic acid as a multifunctional drug carrier-from physicochemical properties to biomedical application a modern insight on the ancient drug. Int J Pharm. 2019;559:271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Q, Polyakov NE, Chistyachenko YS, Khvostov MV, Frolova TS, Tolstikova TG, et al. Preparation of curcumin self micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Deliv. 2018;25(1):198–209.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chengying S, Baode S, Junjun Z, Jing W, Hailong Y, Xiaofang Li. Glycyrrhizic acid-based self-assembled micelles for improving oral bioavailability of paeoniflorin. Drug Dev Ind Pharm. 2021;47(2):207–14.

    Article  Google Scholar 

  18. Yingying D, Changyuan W, Wang Yutong Xu, Youwei ZJ, Meng G, et al. Development and evaluation of a novel drug delivery: Soluplus/TPGS mixed micelles loaded with piperine in vitro and in vivo. Drug Dev Ind Pharm. 2018;44(9):1409–16.

    Article  Google Scholar 

  19. Madani F, Esnaashari SS, Bergonzi MC, Webster TJ, Younes HM, Khosravani M, et al. Paclitaxel methotrexate co loaded PLGA nanoparticles in glioblastoma treatment formulation development and in vitro antitumor activity evaluation. Life Sci. 2020;256:117943.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu D, Zhang WG, Nie XD, Ding SW, Zhang DT, Yang L. Rational design of ultra-small photoluminescent copper nano-dots loaded PLGA micro-vessels for targeted co-delivery of natural piperine molecules for the treatment for epilepsy. J Photochem Photobiol B. 2020;205:111805.

    Article  CAS  PubMed  Google Scholar 

  21. Sonali, Singh RP, Singh N, Sharma G, Vijayakumar MR, Koch B, et al. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics. Drug Deliv. 2016;23(4):1261–71.

    Article  CAS  PubMed  Google Scholar 

  22. Jin-Seok C. Development of surface curcumin nanoparticles modified with biological macromolecules for anti-tumor effects. Int J Biol Macromol. 2016;92:850–9.

    Article  Google Scholar 

  23. Sohn JS, Yoon DS, Sohn JY, Park JS, Choi JS. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals. Mater Sci Eng C Mater Biol Appl. 2017;72:228–37.

    Article  CAS  PubMed  Google Scholar 

  24. Yang Le, Cai Y-S, Ke Xu, Zhu J-L, Li Y-B, Xiao-Qing Wu, et al. Sodium selenite induces apoptosis and inhibits autophagy in human synovial sarcoma cell line SW982 in vitro. Mol Med Rep. 2018;17(1):6560–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ucker David S, Levine JS. Exploitation of apoptotic regulation in cancer. Front Immunol. 2018;9:241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Katarina E, Boris L, Jana K, Zdena S, Albert B. Detection of the mitochondrial membrane potential by the cationic dye JC-1 in L1210 cells with massive overexpression of the plasma membrane ABCB1 drug transporter. Int J Mol Sci. 2018;19(7):1985.

    Article  Google Scholar 

  27. Ucker David S, Levine JS. Exploitation of apoptotic regulation in cancer. Front Immunol. 2018;9:241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cai J, Luo S, Xueli LV, Yingguang D, Huang H, Zhao B, et al. Formulation of injectable glycyrrhizic acid-hydroxycamptothecin micelles as new generation of DNA topoisomerase I inhibitor for enhanced antitumor activity. Int J Pharm. 2019;571:118693.

    Article  CAS  PubMed  Google Scholar 

  29. Ju S-M, Kim M-S, Jo Y-S, Jeon Y-M, Bae J-S, Pae H-O, et al. Licorice and its active compound glycyrrhizic acid ameliorates cisplatin-induced nephrotoxicity through inactivation of p53 by scavenging ROS and overexpression of p21 in human renal proximal tubular epithelial cells. Eur Rev Med Pharmacol Sci. 2017;21(4):890–9.

    PubMed  Google Scholar 

  30. Yuangang Zu, Li M, Xiuhua Z, Ge Yunlong Yu, Xinyang ZY, et al. Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery. Int J Nanomedicine. 2013;8:1207–22.

    Article  Google Scholar 

  31. Su Xitong Wu, Mingming LH, Dong Wenxiang Xu, Meng ZP. Glycyrrhizic acid: a promising carrier material for anticancer therapy. Biomed Pharmacother. 2017;95:670–8.

    Article  CAS  PubMed  Google Scholar 

  32. Tsai JJ, Pan PJ, Hsu FT, Chung JG, Chiang IT. In vitro glycyrrhizic acid modulates apoptosis through extrinsic/intrinsic pathways and inhibits protein kinase b- and extracellular signal-regulated kinase-mediated metastatic potential in hepatocellular carcinoma and. Am J Chin Med. 2020;48(1):223–44.

    Article  CAS  PubMed  Google Scholar 

  33. Yimeng Z, Ning Li, QiuZhixia Lu, Xiaoyu FM, Xijing C, et al. Superior anti-neoplastic activities of triacontanol-PEG conjugate: synthesis, characterization and biological evaluations. Drug Deliv. 2018;25(1):1546–59.

    Article  Google Scholar 

  34. Godara S, Lather V, Kirthanashri SV, Awasthi R, Pandita D. Lipid PLGA hybrid nanoparticles of paclitaxel preparation characterization in vitro and in vivo evaluation. Mater Sci Eng C Mater Biol Appl. 2020;109:110576.

    Article  CAS  PubMed  Google Scholar 

  35. Bose RJ, Lee SH, Park H. Lipid-based surface engineering of PLGA nanoparticles for drug and gene delivery applications. Biomater Res. 2016;20:34.

  36. Ramona B, Andreas E, Nadejda M, Carolin T, Johannes K, Eva R. Nano-extrusion: a promising tool for continuous manufacturing of solid nano-formulations. Int J Pharm. 2014;477:1–11.

    Article  Google Scholar 

  37. Semin K, Sanghun L, Park J, Lee JY. Electrochemical co-deposition of polydopamine/hyaluronic acid for anti-biofouling bioelectrodes. Front Chem. 2019;7:262.

    Article  Google Scholar 

  38. Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.

    Article  CAS  PubMed  Google Scholar 

  39. Ornelas-Megiatto C, Shah PN, Wich PR, Cohen JL, Tagaev JA, Smolen JA, et al. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes. Mol Pharm. 2012;9(11):3012–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rassu G, Porcu EP, Fancello S, Obinu A, Senes N, Galleri G, et al. Intranasal delivery of genistein-loaded nanoparticles as a potential preventive system against neurodegenerative disorders. Pharmaceutics. 2018;11(1):8.

  41. Zhu T, Shi L, Chunyang Yu, Dong Y, Qiu F, Shen L, et al. Ferroptosis promotes photodynamic therapy: supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment. Theranostics. 2019;9(11):3293–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abouelmagd SA, Sun B, Chang AC, Ku YL, Yeo Y. Release kinetics study of poorly water-soluble drugs from nanoparticles: are we doing it right? Mol Pharm. 2015;12(3):997–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sedeky AS, Khalil IA, Hefnawy A, El-Sherbiny IM. Development of core-shell nanocarrier system for augmenting piperine cytotoxic activity against human brain cancer cell line. Eur J Pharm Sci. 2018;118:103–12.

    Article  CAS  PubMed  Google Scholar 

  44. Klose D, Siepmann F, Elkharraz K, Siepmann J. How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int J Pharm. 2006;314(2):198–206.

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Yang P, Zhao X, Gao D, Sun N, Tian Z,et al. Multifunctional cargo-free nanomedicine for cancer therapy. Int J Mol Sci. 2018;19(10):2963.

  46. Muddineti OS, Kumari P, Ghosh B, Biswas S. Transferrin-modified vitamin-E/lipid based polymeric micelles for improved tumor targeting and anticancer effect of curcumin. Pharm Res. 2018;35:5–97.

    Article  Google Scholar 

  47. Muthu MS, Kutty RV, Luo Z, Xie J, Si-Shen F. Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters. Biomaterials. 2015;39:234–48.

    Article  CAS  PubMed  Google Scholar 

  48. Xu Y, Wu H, Huang J, Qian W, Martinson DE, Ji B, et al. Probing and enhancing ligand-mediated active targeting of tumors using sub-5 nm ultrafine iron oxide nanoparticles. Theranostics. 2020;10(6):2479–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xiao Y, Dayuan Xu, Song H, Shu F, Wei P, Yang X, et al. Cuprous oxide nanoparticles reduces hypertrophic scarring by inducing fibroblast apoptosis. Int J Nanomed. 2019;14:5989–6000.

    Article  CAS  Google Scholar 

  50. Xingzhen Z, Lixia Z, Guangxi Z, Jianbo Ji, Anchang L. multifunctional polyethylene glycol (PEG)-poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles loading doxorubicin and tetrahydrocurcumin for combined chemoradiotherapy of glioma. Med Sci Monit. 2019;25:9737–51.

    Article  Google Scholar 

  51. Thakkar S, Sharma D, Kalia K, Tekade RK. Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: a review. Acta Biomater. 2020;101:43–68.

    Article  CAS  PubMed  Google Scholar 

  52. Arneth B. Tumor microenvironment. Medicina (Kaunas). 2019;56(1):15.

  53. Yhee JY, Jeon S, Yoon HY, Shim MK, KoMin HJ, et al. Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles. J Control Release. 2017;267:223–31.

    Article  CAS  PubMed  Google Scholar 

  54. Sun Y, Li Y, Shi S, Dong C. Exploiting a new approach to destroy the barrier of tumor microenvironment: nano-architecture delivery systems. Molecules. 2021;26(9):2703.

  55. Abyaneh HS, Regenold M, McKee TD, Allen C, Gauthier MA. Towards extracellular matrix normalization for improved treatment of solid tumors. Theranostics. 2020;10(4):1960-80.

  56. Liu Min Wu, Lei SW, Yi C, Yuan H. Iron-mimic peptide converts transferrin from foe to friend for orally targeting insulin delivery. J Mater Chem B. 2018;6(4):593–601.

    Article  CAS  PubMed  Google Scholar 

  57. Zhijie Z, Xiaoyan C, Dongjian Ge, Shanshan W, Bin Qi. Protective effects of astragaloside IV combined with budesonide in bronchitis in rats by regulation of Nrf2/Keap1 pathway. Med Sci Monit. 2018;24:8481–8.

    Article  Google Scholar 

  58. Qi Z, Chen L, Li Z, Shao Z, Qi Y, Gao K, et al. Immunomodulatory effects of (24R)-pseudo-ginsenoside HQ and (24S)-pseudo-ginsenoside HQ on cyclophosphamide-induced immunosuppression and their anti-tumor effects study. Int J Mol Sci. 2019;20(4):836.

    Article  CAS  PubMed Central  Google Scholar 

  59. Croker BA, O’Donnell JA, Nowell CJ, Metcalf D, Dewson G, Campbell KJ, et al. Fas-mediated neutrophil apoptosis is accelerated by Bid, Bak, and Bax and inhibited by Bcl-2 and Mcl-1. Acta Pharmacol Sin. 2011;108(32):13135–40.

    CAS  Google Scholar 

Download references

Funding

The work was supported by the Natural Science Foundation of Ningxia Province (no. 2020AAC03140), the Key Research and Development Program of Ningxia Province (no. 2017BY084), and the Key Research Funding of Ningxia Province (2018BFH02001).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Jianhong Yang; investigation, Shuang Li; methodology, Shuang Li, Jueshuo Guo, and Zonghua Tian; project administration, Jianhong Yang, Li Li, and Yang Niu; data curation, Shuang Li, Li Li, and Yang Niu; writing—original draft, Shuang Li, Jueshuo Guo, and Zonghua Tian; writing—review and editing, Shuang Li and Jueshuo Guo. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Li Li or Jianhong Yang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shuang Li and Jueshuo Guo contributed equally to this work

The original online version of this article was revised to correct the affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Guo, J., Tian, Z. et al. Piperine-Loaded Glycyrrhizic Acid- and PLGA-Based Nanoparticles Modified with Transferrin for Antitumor. AAPS PharmSciTech 22, 239 (2021). https://doi.org/10.1208/s12249-021-02123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02123-6

Keywords

Navigation