Skip to main content

Advertisement

Log in

Development and Optimization of Itraconazole-Loaded Solid Lipid Nanoparticles for Topical Administration Using High Shear Homogenization Process by Design of Experiments: In Vitro, Ex Vivo and In Vivo Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of present study was to develop topical itraconazole (ITZ)-loaded solid lipid nanoparticles for treatment of superficial fungal infections. Formulations were prepared using high shear homogenization process, and optimized by employing a two-step design of experiments (DoE) approach. It comprised a Taguchi experimental design for screening of ‘vital few’ factors, and a central composite experimental design for optimization. Overlay of the response surface maps for percent drug entrapment (PDE), particle size, ITZ skin retention and permeation was performed to obtain the optimized ITZ-loaded SLNs (OPT-SLNs) suspension. The optimized ITZ-loaded SLNs (OPT-SLNs) showed mean particle size of (262.92 ± 8.56 nm) and zeta potential value of 22.36 mV. Excellent drug entrapment (94.21 ± 3.35%) and skin retention of ITZ (43.03 ± 1.86 μg/cm2) was achieved by OPT-SLNs. The hydrogel formulation of OPT-SLNs exhibited good gel consistency and spreadability characteristics. Pharmacodynamic and skin sensitivity studies in standardized rodent models revealed that OPT-SLNs hydrogel was more efficacious than conventional oral and topical antifungal therapies, and also safe for topical administration. Furthermore, the histoptahological evaluation depicted complete recovery of infected rats after 14-day treatment regimen of OPT-SLNs hydrogel. The developed formulation was found to have tremendous potential to enhance ITZ activity through topical administration approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Haria M, Bryson HM, Goa KL. Itraconazole. A reappraisal of its pharmacological properties and therapeutic use in the management of superficial fungal infections. Drugs. 1996;51(4):585–620.

    Article  CAS  PubMed  Google Scholar 

  2. Van Cauteren H, Heykants J, De Coster R, Cauwenbergh G. Itraconazole: Pharmacologic studies in animals and humans. Rev Infect Dis. 1987;9(Supplement 1):S43–6.

    Article  PubMed  Google Scholar 

  3. Lestner JM, Denning DW. Tremor: a newly described adverse event with long-term itraconazole therapy. J Neurol Neurosurg Psychiatry. 2010;81:327–9.

    Article  PubMed  Google Scholar 

  4. Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.

    Article  PubMed  Google Scholar 

  5. El-Housiny S, Shams Eldeen MA, El-Attar YA, Salem HA, Attia D, Bendas ER, et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv. 2018;25(1):78–90.

    Article  CAS  PubMed  Google Scholar 

  6. Moglad EH, Fatima F, Ahmed MM, Seshadri VD, Anwer MK, Aldawsari MF. Development of topical antibacterial gel loaded with cefadroxil solid lipid nanoparticles: In vivo wound healing activity and epithelialization study. Int J Pharmacol. 2020;16(4):298–309.

    Article  CAS  Google Scholar 

  7. US National Library of Medicine (2018): Clinical Assessment of Oxiconazole Nitrate Solid Lipid Nanoparticles Loaded Gel. https://ClinicalTrials.gov/show/NCT03823040.

  8. Bhadra A, Karmakar G, Nahak P, Chettri P, Roy B, Guha P, et al. Impact of detergents on the physiochemical behavior of itraconazole loaded nanostructured lipid carriers. Colloids Surf A Physicochem Eng Asp. 2017;516:63–71.

    Article  CAS  Google Scholar 

  9. Wilkosz N, Łazarski G, Kovacik L, Gargas P, Nowakowska M, Jamróz D, et al. Molecular insight into drug-loading capacity of PEG–PLGA nanoparticles for itraconazole. J Phys Chem B. 2018;122(28):7080–90.

    Article  CAS  PubMed  Google Scholar 

  10. Zeb A, Qureshi OS, Kim HS, Kim MS, Kang JH, Park JS, et al. High payload itraconazole-incorporated lipid nanoparticles with modulated release property for oral and parenteral administration. J Pharm Pharmacol. 2017;69(8):955–66.

    Article  CAS  PubMed  Google Scholar 

  11. Kim S, Wang H, Yan L, Zhang X, Cheng Y. Continuous preparation of itraconazole nanoparticles using droplet based microreactor. Chem Eng J. 2020;393:124721.

    Article  CAS  Google Scholar 

  12. Rana SS, Bhatt S, Kumar M, Malik A, Sharma JB, Arora D, et al. Design and optimization of itraconazole loaded SLN for intranasal administration using central composite design. Nanosci Nanotech Asia. 2020;10(6):884–91.

    Article  CAS  Google Scholar 

  13. El-Sheridy NA, Ramadan AA, Eid AA, El-Khordagui LK. Itraconazole lipid nanocapsules gel for dermatological applications: in vitro characteristics and treatment of induced cutaneous candidiasis. Colloids Surf B Biointerfaces. 2019;181:623–31.

    Article  CAS  PubMed  Google Scholar 

  14. Passos JS, de Martino LC, Dartora VFC, de Araujo GL, Ishida K, Lopes LB. Development, skin targeting and antifungal efficacy of topical lipid nanoparticles containing itraconazole. Eur J Pharm Sci. 2020;149:105296.

    Article  CAS  PubMed  Google Scholar 

  15. Qumber M, Alruwaili NK, Bukhari SNA, Alharbi KS, Imam SS, Afzal M, et al. BBD-based development of itraconazole loaded nanostructured lipid carrier for topical delivery: in vitro evaluation and antimicrobial assessment. J Pharm Innov. 2021;16(1):85–98.

    Article  Google Scholar 

  16. Kumar N, Goindi S. D-optimal experimental approach for designing topical microemulsion of itraconazole: Characterization and evaluation of antifungal efficacy against a standardized Tinea pedis infection model in Wistar rats. Eur J Pharm Sci. 2015;67:97–112.

    Article  CAS  PubMed  Google Scholar 

  17. Kumar N, Goindi S. Statistically designed nonionic surfactant vesicles for dermal delivery of itraconazole: Characterization and in vivo evaluation using a standardized Tinea pedis infection model. Int J Pharm. 2014;472(1–2):224–40.

    Article  CAS  PubMed  Google Scholar 

  18. Singh B, Kapil R, Nandi M, Ahuja N. Developing oral drug delivery systems using formulation by design: vital precepts, retrospect and prospects. Expert Opin Drug Deliv. 2011;8(10):1341–60.

    Article  CAS  PubMed  Google Scholar 

  19. Triplett M II, Rathman J. Optimization of β-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique. J Nanopart Res. 2009;11(3):601–14.

    Article  CAS  Google Scholar 

  20. Shah KA, Date AA, Joshi MD, Patravale VB. Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery. Int J Pharm. 2007;345(1–2):163–71.

    Article  CAS  PubMed  Google Scholar 

  21. Joshi M, Patravale V. Formulation and evaluation of nanostructured lipidcarrier (NLC)-based gel of valdecoxib. Drug Dev Ind Pharm. 2006;32:911–8.

    Article  CAS  PubMed  Google Scholar 

  22. Farboud ES, Nasrollahi SA, Tabbakhi Z. Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: in vitro and in vivo studies. Int J Nanomedicine. 2011;6:611–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gandomia N, Aboutaleba E, Nooria M, Atyabib F, Fazelic MR, Farbodd E, et al. Solid lipid nanoparticles of ciprofloxacin hydrochloride with enhanced antibacterial activity. J Nanosci Lett. 2012;2:21–8.

    Google Scholar 

  24. Ghadiri M, Vatanara A, Doroud D, Roholamini NA. Paromomycin loaded solid lipid nanoparticles: Characterization of production parameters. Biotechnol Bioproc E. 2011;16(3):617–23.

    Article  CAS  Google Scholar 

  25. Manjunath K, Reddy JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol. 2005;27:1–20.

    Article  CAS  Google Scholar 

  26. Epstein-Jr. EH, Tang J, Beachy PA, Rajdas J, Kim J. Topical itraconazole formulations and uses thereof. In: WIPO, editor. WO2013/036830: The Board of Trustees of the Leland Stanford Junior University; 2013. p. 1–22.

  27. Francois MKJ, Carlo-Dries WMA. Oral formulations of an antifungal. USPTO. US5707975: Janessen Pharmaceutica; 1998. p. 1–3.

  28. Aggarwal N, Goindi S. Preparation and in vivo evaluation of solid lipid nanoparticles of griseofulvin for dermal use. J Biomed Nanotechnol. 2012;9(4):564–76.

    Article  CAS  Google Scholar 

  29. Kim J-Y, Song J-Y, Lee E-J, Park S-K. Rheological properties and microstructures of Carbopol gel network system. Colloid Polym Sci. 2003;281(7):614–23.

    Article  CAS  Google Scholar 

  30. Mandawgade SD, Patravale VB. Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int J Pharmacogn. 2008;363(1–2):132–8.

    Article  CAS  Google Scholar 

  31. Souto EB, Wissing SA, Barbosa CM, Müller RH. Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur J Pharm Biopharm. 2004;58(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  32. Kumar N, Shishu, Saini B, Bansal G. Thermal characterization and compatibility studies of itraconazole and excipients for development of solid lipid nanoparticles. J Therm Anal Calorim. 2014;115:2375–83.

    Article  CAS  Google Scholar 

  33. Lewis BA, Engelman DM. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol. 1983;166(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  34. Yun H, Choi Y-W, Kim NJ, Sohn D, Yun H, Choi Y-W, et al. Physicochemical properties of phosphatidylcholine (PC) monolayers with different alkyl chains, at the air/water interface. Bull Korean Chem Soc. 2003;24(3):377–83.

    Article  CAS  Google Scholar 

  35. Wu X, Landfester K, Musyanovych A, Guy RH. Disposition of charged nanoparticles after their topical application to the skin. Skin Pharmacol Physiol. 2010;23(3):117–23.

    Article  CAS  PubMed  Google Scholar 

  36. Nagarsenker MS, Londhe VL, Nadkarni GD. Preparation and evaluation of liposomal formulations of tropicamide for ocular delivery. Int J Pharm. 1999;190:63–71.

    Article  CAS  PubMed  Google Scholar 

  37. Law SL, Huang KJ, Chiang CH. Acyclovir-containing liposomes for potential ocular delivery Corneal penetration and absorption. J Control Release. 2000;63:135–40.

    Article  CAS  PubMed  Google Scholar 

  38. Peira E, Carlotti ME, Trotta C, Cavalli R, Trotta M. Positively charged microemulsions for topical application. Int J Pharm. 2008;346(1–2):119–23.

    Article  CAS  PubMed  Google Scholar 

  39. Rojanasakul Y, Wang LY, Bhat M, Glover DD, Malagna CJ, Ma JKH. The transport barrier of epithelia: a comparative study on membrane permeability and charge selectivity in the rabbit. Pharm Res. 1992;9:1029–34.

    Article  CAS  PubMed  Google Scholar 

  40. Abdelbary G, Fahmy RH. Diazepam loaded solid lipid nanoparticles: Design and characterization. AAPS PharmSciTech. 2009;10:211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mei Z, Chen H, Weng T, Yang Y, Yang X. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm. 2003;56(2):189–96.

    Article  CAS  PubMed  Google Scholar 

  42. Das S, Ng WK, Kanaujia P, Kim S, Tan RBH. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: Effects of process variables. Colloids Surf B Biointerfaces. 2011;88(1):483–9.

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm. 2007;328(2):191–5.

    Article  CAS  PubMed  Google Scholar 

  44. Charcosset C, El-Harati A, Fessi H. Preparation of solid lipid nanoparticles using a membrane contactor. J Control Release. 2005;108(1):112–20.

    Article  CAS  PubMed  Google Scholar 

  45. Chattopadhyay P, Shekunov BY, Yim D, Cipolla D, Boyd B, Farr S. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev. 2007;59(6):444–53.

    Article  CAS  PubMed  Google Scholar 

  46. Leroux JC, Allemann E, Doelker E, Gurny R. New approach for the preparation of nanoparticles by an emulsification-diffusion method. Eur J Pharm Biopharm. 1995;41:14–8.

    CAS  Google Scholar 

  47. Lim S, Kim C. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded withall-trans retenoic acid. Int J Pharm. 2002;243:135–46.

    Article  CAS  PubMed  Google Scholar 

  48. Weyenberg W, Filev P, Plas DVD, Vandervoort J, Smet KD, Sollie P, et al. Cytotoxicity of submicron emulsions and solid lipid nanoparticles for dermal application. Int J Pharm. 2007;337:291–8.

    Article  CAS  PubMed  Google Scholar 

  49. Neumann F, Elger W. The Effect of a New Antiandrogenic Steroid, 6-Chloro-17-hydroxy-1[alpha],2[alpha]-methylenepregna-4,6-diene-3,20-dione Acetate (Cyproterone Acetate)1 on the Sebaceous Glands of Mice2. J Investig Dermatol. 1966;46(6):561–72.

    Article  CAS  PubMed  Google Scholar 

  50. Raza K, Katare OP, Setia A, Bhatia A, Singh B. Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes. J Microencapsul. 2013;30(3):225–36.

    Article  CAS  PubMed  Google Scholar 

  51. Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release. 2004;95(3):627–38.

    Article  CAS  PubMed  Google Scholar 

  52. Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst. 1996;13(3–4):257–388.

    Article  CAS  PubMed  Google Scholar 

  53. Spector A, Denning G, Stoll L. Retention of human skin fibroblast fatty acid modifications during maintenance culture. Vitro. 1980;16(11):932–40.

    Article  CAS  Google Scholar 

  54. Chathoth S, Ramasami C, Rompicharla N. Effect of penetration enhancers on the permeability characteristics of lisinopril transdermal delivery systems. Asian J Pharm. 2012;6:130–5.

    Article  CAS  Google Scholar 

  55. Das MK, Palei NN. Sorbitan ester niosomes for topical delivery of rofecoxib. Indian J Exp Biol. 2011;49:438–45.

    CAS  PubMed  Google Scholar 

  56. Hsieh DS. Drug permeation enhancement - Theory and applications. Drug Dev Ind Pharm. 1994;20(10):1829.

    Article  Google Scholar 

  57. Xu P, Chien YW. Enhanced skin permeability for transdermal drug delivery: physiopathological and physicochemical considerations. Crit Rev Ther Drug Carrier Syst. 1991;8(3):211–36.

    CAS  PubMed  Google Scholar 

  58. AZ Muhlen, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur J Pharm Biopharm. 1998;45:149–55.

    Article  Google Scholar 

  59. Dalvi UG, Zatz. Effect of nonionic surfactants on penetration of dissolved benzocaine through hairless mouse skin. J Soc Cosmet Chem. 1981;32:87–94.

    CAS  Google Scholar 

  60. Van der Merwe E, Ackermann C, Van W. Factors affecting the permeability of urea and water through nude mouse skin in vitro. I. Temperature and time of hydration. Int J Pharmacogn. 1988;44:71–4.

    Article  Google Scholar 

  61. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, et al. Nanoparticles–an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66(2):159–64.

    Article  CAS  PubMed  Google Scholar 

  62. Dubey A, Prabhu P, Kamath J. Nano Structured lipid carriers: A Novel Topical drug delivery system. Int J Pharm Tech Res. 2012;4(2):705–14.

    CAS  Google Scholar 

  63. Kohli AK, Alpar HO. Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm. 2004;275(1):13–7.

    Article  CAS  PubMed  Google Scholar 

  64. Yu H-Y, Liao H-M. Triamcinolone permeation from different liposome formulations through rat skin in vitro. Int J Pharm. 1996;127:1–7.

    Article  CAS  Google Scholar 

  65. Zhuang C-Y, Li N, Wang M, Zhang X-N, Pan W-S, Peng J-J, et al. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394(1–2):179–85.

    Article  CAS  PubMed  Google Scholar 

  66. Hou D, Xie C, Huang K, Zhu C. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials. 2003;24(10):1781–5.

    Article  CAS  PubMed  Google Scholar 

  67. Guan T, Miao Y, Xu L, Yang S, Wang J, He H, et al. Injectable nimodipine-loaded nanoliposomes: Preparation, lyophilization and characteristics. Int J Pharm. 2011;410(1–2):180–7.

    Article  CAS  PubMed  Google Scholar 

  68. Liu M, Chen L, Zhao Y, Gan L, Zhu D, Xiong W, et al. Preparation, characterization and properties of liposome-loaded polycaprolactone microspheres as a drug delivery system. Colloids Surf, A. 2012;395:131–6.

    Article  CAS  Google Scholar 

  69. Georgetti SR, Casagrande R, Moura-de-Carvalho Vicentini FT, Verri WA Jr, Fonseca MJV. Evaluation of the antioxidant activity of soybean extract by different in vitro methods and investigation of this activity after its incorporation in topical formulations. Eur J Pharm Biopharm. 2006;64(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  70. Pena LE, Lee BI, Sternes JF. Structural rheology of model ointment. Pharm Res. 1994;11:875–81.

    Article  CAS  PubMed  Google Scholar 

  71. Schäfer-Korting M, Mehnert W, Korting HC. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007;59(6):427–43.

    Article  PubMed  CAS  Google Scholar 

  72. Zhai H, Maibach HI. Effects of skin occlusion on percutaneous absorption: an overview. Skin Pharmacol App Skin Physiol. 2001;14(1):1–10.

    Article  CAS  Google Scholar 

  73. Berman B, Ellis C, Leyden J, Lowe N, Savin R, Shupack J, et al. Efficacy of a 1-week, twice-daily regimen of terbinafine 1 % cream in the treatment of interdigital tinea pedis: Results of placebo-controlled, double-blind, multicenter trials. J Am Acad Dermatol. 1992;26(6):956–60.

    Article  CAS  PubMed  Google Scholar 

  74. Canberk Y, Ahıshalı B, Onar FD, Karabulut E. Ultrastructural alterations in the epidermis of patients with Tinea pedis. Balkan Med J. 2011;28:151–6.

    Google Scholar 

  75. Alkhayat H, Al-Sulaili N, O’Brien E, McCuaig C, Watters K. The PAS stain for routine diagnosis of onychomycosis. Bahrain Med Bull. 2009;31:1–8.

    Google Scholar 

Download references

Acknowledgements

The authors thank the University Grants Commission (UGC), New Delhi, for providing financial support for this work. The authors are grateful to Professor O. P. Katare and Professor Bhupinder Singh for valuable discussions related to present work. The authors also acknowledge the help of Dr. Sandeep Kumar and Professor A. K. Jana in performing in vivo studies. The present manuscript carries communication no. NIPER-H/2021/174.

Funding

The study was funded by UGC, New Delhi (Major Research Project no. F34-124–08(SR).

Author information

Authors and Affiliations

Authors

Contributions

NK determined the research framework, performed the experiments, compiled and interpreted the data and drafted the manuscript. SG interpreted the data and supervised the study.

Corresponding author

Correspondence to Neeraj Kumar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is dedicated to memory of late Professor Shishu Goindi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Goindi, S. Development and Optimization of Itraconazole-Loaded Solid Lipid Nanoparticles for Topical Administration Using High Shear Homogenization Process by Design of Experiments: In Vitro, Ex Vivo and In Vivo Evaluation. AAPS PharmSciTech 22, 248 (2021). https://doi.org/10.1208/s12249-021-02118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02118-3

Keywords

Navigation