Skip to main content
Log in

Preparation and Characterization of pH-Independent Sustained-Release Tablets Containing Hot Melt Extruded Solid Dispersions of Clarithromycin

Tablets Containing Solid Dispersions of Clarithromycin

  • Research Article
  • Theme: Advancements in Amorphous Solid Dispersions to Improve Bioavailability
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The limited solubility of clarithromycin (CAM), coupled with low bioavailability and rapid elimination, are major shortcomings, needed to be addressed to achieve optimum therapeutic goals. Therefore, sustained-release (SR) tablets containing solid dispersion (SD) granules of CAM were prepared in this study. Initially, SD granules of CAM were prepared by hot melt extrusion (HME) technique using Kollidon VA64 as a hydrophilic carrier. The saturation solubility of SD showed almost 4.5-fold increase as compared to pure CAM in pH 6.8 medium. In vitro drug dissolution data indicated a substantial increase in the dissolution of SD as compared to that of pure CAM. The thermal stability of drug, carrier, and SD at elevated HME temperatures was evident from the results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Powder X-ray diffraction (PXRD) data and scanning electron microscope (SEM) images revealed a decrease in the crystallinity and the uniform dispersion of drug, respectively. Moreover, Fourier transformed infrared spectroscopy (FT-IR) data confirmed the formation of hydrogen bond between the carbonyl group of drug and the hydroxyl group of carrier. SD loaded sustained-release (SD-SR) matrix tablets were prepared with hydrophobic polymers (Eudragit RS100 and Eudragit RL100). The pH-independent swelling and permeability of both polymers were responsible for the sustained drug release from SD-SR tablets. Pharmacokinetic (PK) studies suggested a 3.4-fold increase in the relative bioavailability of SD-SR tablets as compared to that of pure CAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BBD:

Box-behnken Design

BS:

Backscarttering

CFU:

Colony-Forming unit

CL_NP:

Cluser of nanoparticles

Coated_LGG:

Coated Lacticaseibacillus rhamnous GG

CPPs:

Critical process parameters

CQAs:

Critical quality attributes

CTRL:

Control

DLS:

Dynamic light diffusion

DoE:

Design of the experiment

EDL:

Electric double layer

LAB:

Lactic acid bacteria

LGG:

Lacticaseibacillus rhamnous GG

MCs:

Micricapsules

NPs:

Nanoparticles

PCs:

Photon correlation spectroscopy

PDI:

Polydispersity index

QTTP:

Quality target profile

SD:

Standard deviation

T:

Transmission

TEM:

Transmission electron microscopy

TSI:

Turbiscan Stability Index

TSS:

Total soluble solids

ZP:

Zeta potential

References

  1. Shi N-Q, Wang S-R, Zhang Y, Huo J-S, Wang L-N, Cai J-H, et al. Hot melt extrusion technology for improved dissolution, solubility and “spring-parachute” processes of amorphous self-micellizing solid dispersions containing BCS II drugs indomethacin and fenofibrate: profiles and mechanisms. Eur J Pharm Sci. 2019;130:78–90. https://doi.org/10.1016/j.ejps.2019.01.019.

    Article  CAS  PubMed  Google Scholar 

  2. Borba PAA, Pinotti M, de Campos CEM, Pezzini BR, Stulzer HK. Sodium alginate as a potential carrier in solid dispersion formulations to enhance dissolution rate and apparent water solubility of BCS II drugs. Carbohydr polym. 2016;137:350–9. https://doi.org/10.1016/j.carbpol.2015.10.070.

    Article  CAS  PubMed  Google Scholar 

  3. Albadarin AB, Potter CB, Davis MT, Iqbal J, Korde S, Pagire S, et al. Development of stability-enhanced ternary solid dispersions via combinations of HPMCP and Soluplus® processed by hot melt extrusion. Int J Pharm. 2017;532:603–11. https://doi.org/10.1016/j.ijpharm.2017.09.035.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics. 2018;10:74. https://doi.org/10.3390/pharmaceutics10030074.

    Article  CAS  PubMed Central  Google Scholar 

  5. Sotthivirat S, McKelvey C, Moser J, Rege B, Xu W, Zhang D. Development of amorphous solid dispersion formulations of a poorly water-soluble drug, MK-0364. Int J Pharm. 2013;452:73–81. https://doi.org/10.1016/j.ijpharm.2013.04.037.

    Article  CAS  PubMed  Google Scholar 

  6. Hörmann T, Jäger N, Funke A, Mürb R-K, Khinast JG, Paudel A. Formulation performance and processability window for manufacturing a dual-polymer amorphous solid dispersion via hot-melt extrusion and strand pelletization. Int J Pharm. 2018;553:408–21. https://doi.org/10.1016/j.ijpharm.2018.10.035.

    Article  CAS  PubMed  Google Scholar 

  7. Tran PH, Lee B-J, Tran TT. Recent studies on the processes and formulation impacts in the development of solid dispersions by hot-melt extrusion. Eur J Pharm Biopharm. 2021. https://doi.org/10.1016/j.ejpb.2021.04.009.

    Article  PubMed  Google Scholar 

  8. Hwang I, Kang C-Y, Park J-B. Advances in hot-melt extrusion technology toward pharmaceutical objectives. J Pharm Investig. 2017;47:123–32. https://doi.org/10.1007/s40005-017-0309-9.

    Article  CAS  Google Scholar 

  9. Ren Y, Mei L, Zhou L, Guo G. Recent perspectives in hot melt extrusion-based polymeric formulations for drug delivery: applications and innovations. AAPS PharmSciTech. 2019;20:1–12. https://doi.org/10.1208/s12249-019-1300-8.

    Article  CAS  Google Scholar 

  10. Van Snick B, Holman J, Cunningham C, Kumar A, Vercruysse J, De Beer T, et al. Continuous direct compression as manufacturing platform for sustained release tablets. Int J Pharm. 2017;519:390–407. https://doi.org/10.1016/j.ijpharm.2017.01.010.

    Article  CAS  PubMed  Google Scholar 

  11. Krkobabić M, Medarević D, Cvijić S, Grujić B, Ibrić S. Hydrophilic excipients in digital light processing (DLP) printing of sustained release tablets: impact on internal structure and drug dissolution rate. Int J Pharm. 2019;572: 118790. https://doi.org/10.1016/j.ijpharm.2019.118790.

    Article  CAS  PubMed  Google Scholar 

  12. Yi HG, Chi MH, Kim Y-I, Woo JS, Park E-S. Formulation of a extended release tablet containing dexibuprofen. Arch Pharm Res. 2008;31:1637. https://doi.org/10.1007/s12272-001-2162-6.

    Article  CAS  PubMed  Google Scholar 

  13. Tran TT-D, Tran PH-L, Lim J, Park JB, Choi S-K, Lee B-J. Physicochemical principles of controlled release solid dispersion containing a poorly water-soluble drug. Ther Deliv. 2010;1:51–62. https://doi.org/10.4155/tde.10.3.

  14. Sahoo J, Murthy P, Biswal S. Formulation of sustained-release dosage form of verapamil hydrochloride by solid dispersion technique using eudragit RLPO or Kollidon® SR. AAPS PharmSciTech. 2009;10:27–33. https://doi.org/10.1208/s12249-008-9175-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tran HTT, Park JB, Hong K-H, Choi H-G, Han H-K, Lee J, et al. Preparation and characterization of pH-independent sustained release tablet containing solid dispersion granules of a poorly water-soluble drug. Int J Pharm. 2011;415:83–8. https://doi.org/10.1016/j.ijpharm.2011.05.052.

    Article  CAS  PubMed  Google Scholar 

  16. Chu S, Deaton R, Cavanaugh J. Absolute bioavailability of clarithromycin after oral administration in humans. Antimicrob Agents Chemother. 1992;36:1147. https://doi.org/10.1128/aac.36.5.1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suwa T, Yoshida H, Kohno Y, Yoshitumi S, Ohta K. Metabolic fate of TE-031 (A-56268). III. Absorption, distribution and excretion of 14 C-TE-0341 in rats, mice and dogs. Chemotherapy. 1988;36:213–26. https://doi.org/10.1128/aac.33.5.751.

  18. Nama M, Gonugunta CSR, Veerareddy PR. Formulation and evaluation of gastroretentive dosage forms of clarithromycin. AAPS PharmSciTech. 2008;9:231. https://doi.org/10.1208/s12249-008-9038-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Szafraniec-Szczęsny J, Antosik-Rogóż A, Kurek M, Gawlak K, Górska A, Peralta S, et al. How does the addition of Kollidon® VA64 inhibit the recrystallization and improve ezetimibe dissolution from amorphous solid dispersions? Pharmaceutics. 2021;13:147. https://doi.org/10.3390/pharmaceutics13020147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Das S, Das N. Preparation and in vitro dissolution profile of dual polymer (Eudragit RS100 and RL100) microparticles of diltiazem hydrochloride. J Microencapsul. 1998;15:445–52. https://doi.org/10.3109/02652049809006871.

    Article  CAS  PubMed  Google Scholar 

  21. Smith G, Hussain A, Bukhari NI, Ermolina I. Quantification of residual crystallinity in ball milled commercially sourced lactose monohydrate by thermo-analytical techniques and terahertz spectroscopy. Eur J Pharm Biopharm. 2015;92:180–91. https://doi.org/10.1016/j.ejpb.2015.02.026.

    Article  CAS  PubMed  Google Scholar 

  22. Goodwin DJ, van den Ban S, Denham M, Barylski I. Real time release testing of tablet content and content uniformity. Int J Pharm. 2018;537:183–92. https://doi.org/10.1016/j.ijpharm.2017.12.011.

    Article  CAS  PubMed  Google Scholar 

  23. Blanco M, Coello J, Gonzalez F, Iturriaga H, Maspoch S, Tomas X. Spectrophotometric determination of pharmaceutical dosages by partial least-squares calibration. J Pharm Biomed Anal. 1994;12:509–14. https://doi.org/10.1016/0731-7085(93)e0004-7.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Yang W, Vo AQ, Feng X, Ye X, Kim DW, et al. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation. Carbohydr polym. 2017;177:49–57. https://doi.org/10.1016/j.carbpol.2017.08.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42. https://doi.org/10.1016/0168-3659(87)90034-4.

  26. Amini H, Ahmadiani A. Sensitive determination of clarithromycin in human plasma by high-performance liquid chromatography with spectrophotometric detection. J Chromatogr B. 2005;817:193–7. https://doi.org/10.1016/j.jchromb.2004.12.003.

    Article  CAS  Google Scholar 

  27. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99:306–14. https://doi.org/10.1016/j.cmpb.2010.01.007.

    Article  PubMed  Google Scholar 

  28. Sarode AL, Sandhu H, Shah N, Malick W, Zia H. Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug–polymer interactions on supersaturation. Eur J Pharm Sci. 2013;48:371–84. https://doi.org/10.1016/j.ejps.2012.12.012.

    Article  CAS  PubMed  Google Scholar 

  29. El Nashar NF, Donia AA, Mady OY, El Maghraby GM. Formulation of clarithromycin floating microspheres for eradication of Helicobacter pylori. J Drug Del Sci Techn. 2017;41:213–21. https://doi.org/10.1016/j.jddst.2017.07.016.

    Article  CAS  Google Scholar 

  30. de Souza CMP, dos Santos JAB, do Nascimento AL, Júnior JVC, Júnior FJdLR, de Lima Neto SA, et al. Thermal analysis study of solid dispersions hydrochlorothiazide. J Therm Anal Calorim. 2018;131:681–9. https://doi.org/10.1007/s10973-017-6091-0.

  31. Malladi M, Jukanti R. Formulation development and evaluation of a novel bi-dependent clarithromycin gastroretentive drug delivery system using Box-Behnken design. J Drug Del Sci Techn. 2016;35:134–45. https://doi.org/10.1016/j.jddst.2016.06.003.

    Article  CAS  Google Scholar 

  32. Vojinović T, Medarević D, Vranić E, Potpara Z, Krstić M, Djuriš J, et al. Development of ternary solid dispersions with hydrophilic polymer and surface adsorbent for improving dissolution rate of carbamazepine. Saudi pharm j. 2018;26:725–32. https://doi.org/10.1016/j.jsps.2018.02.017.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Watanabe T, Hasegawa S, Wakiyama N, Kusai A, Senna M. Comparison between polyvinylpyrrolidone and silica nanoparticles as carriers for indomethacin in a solid state dispersion. Int J Pharm. 2003;250:283–6. https://doi.org/10.1016/s0378-5173(02)00549-5.

    Article  CAS  PubMed  Google Scholar 

  34. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14:1691–8.

    Article  CAS  PubMed  Google Scholar 

  35. Soisuwan S, Teeranachaideekul V, Wongrakpanich A, Langguth P, Junyaprasert VB. Impact of uncharged and charged stabilizers on in vitro drug performances of clarithromycin nanocrystals. Eur J Pharm Biopharm. 2019;137:68–76. https://doi.org/10.1016/j.ejpb.2019.02.004.

    Article  CAS  PubMed  Google Scholar 

  36. Jijun F, Lishuang X, Xiaoguang T, Min S, Mingming Z, Haibing H, et al. The inhibition effect of high storage temperature on the recrystallization rate during dissolution of nimodipine–Kollidon VA64 solid dispersions (NM–SD) prepared by hot-melt extrusion. J Pharm Sci. 2011;100:1643–7. https://doi.org/10.1002/jps.22429.

    Article  CAS  PubMed  Google Scholar 

  37. Tantishaiyakul V, Kaewnopparat N, Ingkatawornwong S. Properties of solid dispersions of piroxicam in polyvinylpyrrolidone. Int J Pharm. 1999;181:143–51. https://doi.org/10.1016/s0378-5173(99)00070-8.

    Article  CAS  PubMed  Google Scholar 

  38. Fini A, Moyano JR, Ginés JM, Perez-Martinez JI, Rabasco AM. Diclofenac salts, II. Solid dispersions in PEG6000 and Gelucire 50/13. Eur J Pharm Biopharm. 2005;60:99–111. https://doi.org/10.1016/j.ejpb.2004.11.005.

  39. Pawar J, Tayade A, Gangurde A, Moravkar K, Amin P. Solubility and dissolution enhancement of efavirenz hot melt extruded amorphous solid dispersions using combination of polymeric blends: a QbD approach. Eur J Pharm Sci. 2016;88:37–49. https://doi.org/10.1016/j.ejps.2016.04.001.

    Article  CAS  PubMed  Google Scholar 

  40. Okonogi S, Puttipipatkhachorn S. Dissolution improvement of high drug-loaded solid dispersion. AAPS PharmSciTech. 2006;7:E148–53. https://doi.org/10.1208/pt070252.

    Article  PubMed Central  Google Scholar 

  41. Zi P, Zhang C, Ju C, Su Z, Bao Y, Gao J, et al. Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant-Soluplus. Eur J Pharm Sci. 2019;134:233–45. https://doi.org/10.1016/j.ejps.2019.04.022.

    Article  CAS  PubMed  Google Scholar 

  42. Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015;96:380–7. https://doi.org/10.1016/j.ejpb.2015.07.027.

    Article  CAS  PubMed  Google Scholar 

  43. Nath B, Nath LK, Kumar P. Preparation and in vitro dissolution profile of zidovudine loaded microspheres made of Eudragit RS 100, RL 100 and their combinations. Acta Pol Pharm. 2011;68:409–15. https://doi.org/10.4314/jophas.v7i3.63406.

    Article  CAS  PubMed  Google Scholar 

  44. Reddy KR, Mutalik S, Reddy S. Once-daily sustained-release matrix tablets of nicorandil: formulation and in vitro evaluation. AAPS PharmSciTech. 2003;4:480–8. https://doi.org/10.1208/pt040461.

    Article  PubMed Central  Google Scholar 

Download references

Funding

Authors would like to acknowledge Higher Education Commission of Pakistan for providing funds to Mr. Qazi Amir Ijaz (pin no. 50021487).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasir Abbas.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Supplementary information can be provided on demand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijaz, Q.A., Latif, S., Shoaib, Qua. et al. Preparation and Characterization of pH-Independent Sustained-Release Tablets Containing Hot Melt Extruded Solid Dispersions of Clarithromycin. AAPS PharmSciTech 22, 275 (2021). https://doi.org/10.1208/s12249-021-02115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02115-6

KEY WORDS

Navigation