Skip to main content
Log in

Nanoemulsomes for Enhanced Oral Bioavailability of the Anticancer Phytochemical Andrographolide: Characterization and Pharmacokinetics

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Andrographolide (AG) is an antitumor phytochemical that acts against non-Hodgkin’s lymphoma. However, AG shows low oral bioavailability due to extensive first-pass metabolism and P-glycoprotein efflux. Novel biocompatible lipoprotein-simulating nanosystems, emulsomes (EMLs), have gained significant attention due to their composition of natural components, in addition to being lymphotropic. Loading AG on EMLs is believed to mitigate the disadvantage of AG and enhance its lymphatic transport. This study developed a chylomicron-simulating system (EMLs) as a novel tool to overcome the AG oral delivery obstacles. Optimized EML-AG had a promising vesicular size of 281.62 ± 1.73 nm, a zeta potential of − 22.73 ± 0.06 mV, and a high entrapment efficiency of 96.55% ± 0.25%, which favors lymphatic targeting. In vivo pharmacokinetic studies of EML-AG showed significant enhancement (> sixfold increase) in the rate and extent of AG absorption compared with free AG. However, intraperitoneal injection of a cycloheximide inhibitor caused a significant decrease in AG absorption (~ 52%), confirming the lymphatic targeting potential of EMLs. Therefore, EMLs can be a promising novel nanoplatform for circumventing AG oral delivery obstacles and provide targeted delivery to the lymphatic system at a lower dose with fewer side effects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AG:

Andrographolide

EML:

Emulsome

EML-AG:

Andrographolide-loaded emulsome

PC:

Phosphatidylcholine

Chol:

Cholesterol

CA:

Compritol 888 ATO

CHX:

Cycloheximide

PDI:

Polydispersity index

References

  1. Knapp CM, Whitehead KA. In pursuit of a moving target: nanotherapeutics for the treatment of non-Hodgkin B-cell lymphoma. Expert Opin Drug Deliv. 2014;11(12):1923–37.

    Article  CAS  PubMed  Google Scholar 

  2. Murawski N, Pfreundschuh M. New drugs for aggressive B-cell and T-cell lymphomas. Lancet Oncol. 2010;11(11):1074–85.

    Article  CAS  PubMed  Google Scholar 

  3. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, Allen C, Hansen G, Woodbrook R, Wolfe C. The global burden of cancer 2013. JAMA Oncol. 2015;1(4):505–27.

    Article  PubMed  Google Scholar 

  4. Wang M, Qu Y, Qian Z, Niu T. Methotrexate-Loaded Biodegradable Polymeric Micelles for Lymphoma Therapy in Mouse Model. Blood. 2018;132(Supplement 1):4181–4181.

    Article  Google Scholar 

  5. God JM, Haque A. Burkitt lymphoma: pathogenesis and immune evasion. J Oncol. 2010;2010.

  6. Okebe JU, Skoetz N, Meremikwu MM, Richards S. Therapeutic interventions for Burkitt lymphoma in children. Cochrane Database Syst ReV. 2011;(7).

  7. H. Schulz, J. Bohlius, N. Skoetz, S. Trelle, T. Kober, M. Reiser, M. Dreyling, M. Herold, G. Schwarzer, M. Hallek, Chemotherapy plus Rituximab versus chemotherapy alone for B‐cell non‐Hodgkin's lymphoma, Cochrane Database of Systematic Reviews (4) (2007).

  8. Huang Y, Hu J, Zheng J, Li J, Wei T, Zheng Z, Chen Y. Down-regulation of the PI3K/Akt signaling pathway and induction of apoptosis in CA46 Burkitt lymphoma cells by baicalin. J Exp Clin Cancer Res. 2012;31(1):48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116(9):5338–431.

    Article  CAS  PubMed  Google Scholar 

  10. El-Zahaby SA, Elnaggar YS, Abdallah OY. Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: An emphasis on state of art. J Control Release. 2019;293:21–35.

    Article  CAS  PubMed  Google Scholar 

  11. Khalifa AM, Elsheikh MA, Khalifa AM, Elnaggar YS. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J Control Release. 2019;311:125–37.

    Article  PubMed  CAS  Google Scholar 

  12. Fan Z, Wu J, Fang X, Sha X. A new function of Vitamin E-TPGS in the intestinal lymphatic transport of lipophilic drugs: enhancing the secretion of chylomicrons. Int J Pharm. 2013;445(1–2):141–7.

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh S, Roy T. Nanoparticulate drug-delivery systems: lymphatic uptake and its gastrointestinal applications. J Appl Pharm Sci. 2014;4(6):123–30.

    CAS  Google Scholar 

  14. Sabu K, Padmesh P, Seeni S. Intraspecific variation in active principle content and isozymes of Andrographis paniculata Nees (Kalmegh): a traditional hepatoprotective medicinal herb of India. J Med Aromat Plant Sci. 2001;23(4):637.

    CAS  Google Scholar 

  15. Y. Yan, L.-H. Fang, G.-H. Du, Andrographolide, natural small molecule drugs from plants, Springer2018, pp. 357–362.

  16. Balachandran P, Govindarajan R. Cancer—an ayurvedic perspective. Pharmacol Res. 2005;51(1):19–30.

    Article  PubMed  Google Scholar 

  17. Vojdani A, Erde J. Regulatory T cells, a potent immunoregulatory target for CAM researchers: modulating tumor immunity, autoimmunity and alloreactive immunity (III), Evidence-Based Complement Altern Med. 2006;3.

  18. J. Boik, Natural compounds in cancer therapy, Oregon Medical Press Princeton, MN2001.

  19. Yang S, Evens AM, Prachand S, Singh AT, Bhalla S, David K, Gordon LI. Mitochondrial-mediated apoptosis in lymphoma cells by the diterpenoid lactone andrographolide, the active component of Andrographis paniculata. Clin Cancer Res. 2010;16(19):4755–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suresh K, Goud NR, Nangia A. Andrographolide: solving chemical instability and poor solubility by means of cocrystals. Chem Asian J. 2013;8(12):3032–41.

    Article  CAS  PubMed  Google Scholar 

  21. Xu J, Ma Y, Xie Y, Chen Y, Liu Y, Yue P, Yang M. Design and Evaluation of Novel Solid Self-Nanodispersion Delivery System for Andrographolide. AAPS PharmSciTech. 2017;18(5):1572–84.

    Article  CAS  PubMed  Google Scholar 

  22. Ma Y, Yang Y, Xie J, Xu J, Yue P, Yang M. Novel nanocrystal-based solid dispersion with high drug loading, enhanced dissolution, and bioavailability of andrographolide. Int J Nanomed. 2018;13:3763–79.

    Article  CAS  Google Scholar 

  23. Guo L, Kang L, Liu X, Lin X, Di D, Wu Y, Kong D, Deng Y, Song Y. A novel nanosuspension of andrographolide: Preparation, characterization and passive liver target evaluation in rats. Eur J Pharm Sci. 2017;104:13–22.

    Article  CAS  PubMed  Google Scholar 

  24. A. Varma, H. Padh, N. Shrivastava, Andrographolide: a new plant-derived antineoplastic entity on horizon. Evid-Based Complement Altern Med: eCAM. 2011;(2011) 815390.

  25. Yang T, Sheng HH, Feng NP, Wei H, Wang ZT, Wang CH. Preparation of andrographolide-loaded solid lipid nanoparticles and their in vitro and in vivo evaluations: characteristics, release, absorption, transports, pharmacokinetics, and antihyperlipidemic activity. J Pharm Sci. 2013;102(12):4414–25.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou X, Chen Z. Preparation and performance evaluation of emulsomes as a drug delivery system for silybin. Arch Pharmacal Res. 2015;38(12):2193–200.

    Article  CAS  Google Scholar 

  27. Kumar N, Gupta S, Dube A, Vyas SP. Emerging role of vesicular carriers for therapy of visceral leishmaniasis: conventional versus novel. Critical Reviews™ in Therapeutic Drug Carrier Syst. 2010;27(6).

  28. Sharma V, Chopra H. Role of taste and taste masking of bitter drugs in pharmaceutical industries an overview. Int J Pharm Pharm Sci. 2010;2(4):123–5.

    Google Scholar 

  29. Bergstedt SE, Hayashi H, Kritchevsky D, Tso P. A comparison of absorption of glycerol tristearate and glycerol trioleate by rat small intestine. Am J Physiol-Gastrointest Liver Physiol. 1990;259(3)G386-G393.

  30. Ucisik MH, Sleytr UB, Schuster B. Emulsomes meet S-layer proteins: an emerging targeted drug delivery system. Curr Pharm Biotechnol. 2015;16(4):392–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumar R, Seth N. Emulsomes: an emerging vesicular drug delivery system. J Drug Deliv Ther. 2013;3(6):133–42.

    CAS  Google Scholar 

  32. Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014;11(12):1865–83.

    Article  CAS  PubMed  Google Scholar 

  33. Dahan A, Hoffman A. Evaluation of a chylomicron flow blocking approach to investigate the intestinal lymphatic transport of lipophilic drugs. Eur J Pharm Sci. 2005;24(4):381–8.

    Article  CAS  PubMed  Google Scholar 

  34. Baka E, Comer JE, Takács-Novák K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J Pharm Biomed Anal. 2008;46(2):335–41.

    Article  CAS  PubMed  Google Scholar 

  35. Elsheikh MA, Elnaggar YSR, Hamdy DA, Abdallah OY. Novel cremochylomicrons for improved oral bioavailability of the antineoplastic phytomedicine berberine chloride: Optimization and pharmacokinetics. Int J Pharm. 2018;535(1–2):316–24.

    Article  CAS  PubMed  Google Scholar 

  36. S. Amselem, A. Yogev, E. Zawoznik, D. Friedman, Emulsomes, a novel drug delivery technology, Proceedings of the International Symposium on Controlled Release of Bioactive Materials, 1994, pp. 1368–69.

  37. Paliwal R, Paliwal SR, Mishra N, Mehta A, Vyas SP. Engineered chylomicron mimicking carrier emulsome for lymph targeted oral delivery of methotrexate. Int J Pharm. 2009;380(1–2):181–8.

    Article  CAS  PubMed  Google Scholar 

  38. Akbarsha M, Murugaian P. Aspects of the male reproductive toxicity/male antifertility property of andrographolide in albino rats: effect on the testis and the cauda epididymidal spermatozoa. Phytother Res: Int J Dev Pharmacol Toxicol Eval Nat Prod Deriv. 2000;14(6):432–5.

    Article  CAS  Google Scholar 

  39. Jain V, Nath B, Gupta GK, Shah PP, Siddiqui MA, Pant AB, Mishra PR. Galactose-grafted chylomicron-mimicking emulsion: evaluation of specificity against HepG-2 and MCF-7 cell lines. J Pharm Pharmacol. 2009;61(3):303–10.

    Article  CAS  PubMed  Google Scholar 

  40. M.E. Hayat, Basic techniques for transmission electron microscopy, Elsevier2012.

  41. Tizro P, Choi C, Khanlou N. Sample Preparation for Transmission Electron Microscopy. Biobanking: Springer; 2019. p. 417–24.

    Google Scholar 

  42. Harun SN, Nordin SA, Gani SSA, Shamsuddin AF, Basri M, Basri HB. Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: designs, characterizations, and pharmacokinetics. Int J Nanomed. 2018;13:2571–84.

    Article  CAS  Google Scholar 

  43. Elnaggar YS, Elsheikh MA, Abdallah OY. Phytochylomicron as a dual nanocarrier for liver cancer targeting of luteolin: in vitro appraisal and pharmacodynamics. Nanomedicine (Lond). 2018;13(2):209–32.

    Article  CAS  Google Scholar 

  44. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Öztürk AA, Aygül A, Şenel B. Influence of glyceryl behenate, tripalmitin and stearic acid on the properties of clarithromycin incorporated solid lipid nanoparticles (SLNs): Formulation, characterization, antibacterial activity and cytotoxicity. J Drug Deliv Sci Technol. 2019;54:101240.

    Article  CAS  Google Scholar 

  46. Öztürk AA, Yenilmez E, Özarda MG. Clarithromycin-loaded poly (lactic-co-glycolic acid)(PLGA) nanoparticles for oral administration: effect of polymer molecular weight and surface modification with chitosan on formulation, nanoparticle characterization and antibacterial effects. Polymers. 2019;11(10):1632.

    Article  PubMed Central  CAS  Google Scholar 

  47. Zhu W, Ma S, Qu R, Kang D, Liu Y. Antidepressant effect of baicalin extracted from the root of scutellaria baicalensis in Mice and Rats. Pharm Biol. 2006;44(7):503–10.

    Article  CAS  Google Scholar 

  48. T. Yang, H.-H. Sheng, N.-P. Feng, H. Wei, Z.-T. Wang, C.-H. Wang, Preparation of andrographolide-loaded solid lipid nanoparticles and their in vitro

  49. and in vivo evaluations. characteristics, release, absorption, transports, pharmacokinetics, and antihyperlipidemic activity. J Pharm Sci. 2013;102(12):4414–25.

    Article  CAS  Google Scholar 

  50. Seeballuck F, Lawless E, Ashford MB, O’Driscoll CM. Stimulation of triglyceride-rich lipoprotein secretion by polysorbate 80: in vitro and in vivo correlation using Caco-2 cells and a cannulated rat intestinal lymphatic model. Pharm Res. 2004;21(12):2320–6.

    Article  CAS  PubMed  Google Scholar 

  51. Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discovery. 2015;14(11):781–803.

    Article  CAS  PubMed  Google Scholar 

  52. Manikam ST, Stanslas J. Andrographolide inhibits growth of acute promyelocytic leukaemia cells by inducing retinoic acid receptor-independent cell differentiation and apoptosis. J Pharm Pharmacol. 2009;61(1):69–78.

    Article  CAS  PubMed  Google Scholar 

  53. Yang L, Wu D, Luo K, Wu S, Wu P. Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells. Cancer Lett. 2009;276(2):180–8.

    Article  CAS  PubMed  Google Scholar 

  54. Zhao F, He E-Q, Wang L, Liu K. Anti-tumor activities of andrographolide, a diterpene from Andrographis paniculata, by inducing apoptosis and inhibiting VEGF level. J Asian Nat Prod Res. 2008;10(5):467–73.

    Article  PubMed  CAS  Google Scholar 

  55. Zhou J, Zhang S, Choon-Nam O, Shen H-M. Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells. Biochem Pharmacol. 2006;72(2):132–44.

    Article  CAS  PubMed  Google Scholar 

  56. Roy P, Das S, Auddy RG, Saha A, Mukherjee A. Engineered andrographolide nanoparticles mitigate paracetamol hepatotoxicity in mice. Pharm Res. 2013;30(5):1252–62.

    Article  CAS  PubMed  Google Scholar 

  57. Coupland JN, Hayes JE. Physical approaches to masking bitter taste: lessons from food and pharmaceuticals. Pharm Res. 2014;31(11):2921–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elsheikh MA, Elnaggar YSR, Otify DY, Abdallah OY. Bioactive-Chylomicrons for Oral Lymphatic Targeting of Berberine Chloride: Novel Flow-Blockage Assay in Tissue-Based and Caco-2 Cell Line Models. Pharm Res. 2018;35(1):18.

    Article  PubMed  CAS  Google Scholar 

  59. Paliwal R, Rai S, Vaidya B, Khatri K, Goyal AK, Mishra N, Mehta A, Vyas SP. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomed Nanotechnol Biol Med. 2009;5(2):184–91.

    Article  CAS  Google Scholar 

  60. Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: some recent advances. J Drug Target. 2009;17(9):671–89.

    Article  CAS  PubMed  Google Scholar 

  61. Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 1997;25(1):103–28.

    Article  CAS  Google Scholar 

  62. Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14(2):101–14.

    Article  CAS  PubMed  Google Scholar 

  63. Devaraj GN, Parakh S, Devraj R, Apte S, Rao BR, Rambhau D. Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. J Colloid Interface Sci. 2002;251(2):360–5.

    Article  CAS  PubMed  Google Scholar 

  64. Harasym TO, Cullis PR, Bally MB. Intratumor distribution of doxorubicin following iv administration of drug encapsulated in egg phosphatidylcholine/cholesterol liposomes. Cancer Chemother Pharmacol. 1997;40(4):309–17.

    Article  CAS  PubMed  Google Scholar 

  65. Kirby C, Clarke J, Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J. 1980;186(2):591–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Panossian A, Hovhannisyan A, Mamikonyan G, Abrahamian H, Hambardzumyan E, Gabrielian E, Goukasova G, Wikman G, Wagner H. Pharmacokinetic and oral bioavailability of andrographolide from Andrographis paniculata fixed combination Kan Jang in rats and human. Phytomed: Int J Phytother Phytopharmacol. 2000;7(5):351–64.

    Article  CAS  Google Scholar 

  67. Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev. 2008;60(6):702–16.

    Article  CAS  PubMed  Google Scholar 

  68. Koo SI, Noh SK. Phosphatidylcholine inhibits and lysophosphatidylcholine enhances the lymphatic absorption of α-tocopherol in adult rats. J Nutr. 2001;131(3):717–22.

    Article  CAS  PubMed  Google Scholar 

  69. Trevaskis NL, Porter CJ, Charman WN. The lymph lipid precursor pool is a key determinant of intestinal lymphatic drug transport. J Pharmacol Exp Ther. 2006;316(2):881–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Samar A. Rizk: Methodology, practical work, investigation, resources, writing (original draft), visualization, data curation, formal analysis.

Manal A. Elsheikh: Theoretical framework, data statistical analyses, results interpretation, writing—review and editing.

Yosra S.R. Elnaggar: Conceptualization, writing (review and editing), supervision, validation, international publishing process.

Ossama Y. Abdallah: Conceptualization, resources, validation and supervision.

Corresponding author

Correspondence to Yosra S. R. Elnaggar.

Ethics declarations

Conflict of Interest

The authors report no personal or financial conflicts of interest for this work. In addition, the authors of the current manuscript have no relevant affiliations or significant financial support with any organization. This includes consultancies, employment, stock ownership, honoraria or options, expert testimony, patents or grants received or pending, or royalties.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsheikh, M.A., Rizk, S.A., Elnaggar, Y.S.R. et al. Nanoemulsomes for Enhanced Oral Bioavailability of the Anticancer Phytochemical Andrographolide: Characterization and Pharmacokinetics. AAPS PharmSciTech 22, 246 (2021). https://doi.org/10.1208/s12249-021-02112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02112-9

KEY WORDS

Navigation