Skip to main content

Advertisement

Log in

Bi-polymeric Spongy Matrices Through Cross-linking Polymerization: Synthesized and Evaluated for Solubility Enhancement of Acyclovir

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this study, two hydrophilic polymers hydroxypropyl methyl cellulose and beta-cyclodextrin (β-CD) are used to synthesize highly responsive and spongy polymeric matrices. Porous and stimulus-responsive polymeric network was developed to improve the solubility of acyclovir (ACV) at significant level. Grafting was successfully carried out by free radical polymerization technique. Spongy matrices were characterized by percentage entrapment efficiency, drug loading, solubility studies, FTIR, powder X-ray diffraction, TGA, DSC, XRD, SEM, swelling studies, and in vitro studies. Acute oral toxicity studies were conducted to determine the safety of oral administration of prepared HPMC-βCD-g-poly(AMPS) formulation. Porous and spongy structures were depicted in SEM images. Complex formation and thermal stability of constituents and drug (ACV) were analyzed by FTIR, TGA, and DSC spectra. XRD analysis revealed reduction in acyclovir crystallinity in spongy matrices. Particle size of optimized formulation was found in the range of 197 ± 2.55 nm. The momentous difference with reference product committed that drug solubility and release characteristics were markedly enhanced by the developed spongy matrices. Toxicity studies endorsed that developed spongy matrices were non-toxic and compatible to biological system. The efficient method of preparation, enhanced solubility, excellent physico-chemical characteristics, high dissolution, and non-toxic HPMC-βCD-g-poly(AMPS) spongy matrices may be a promising approach for oral delivery of poorly soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mahmood A, Ahmad M, Sarfraz RM, Minhas MU. β-CD based hydrogel microparticulate system to improve the solubility of acyclovir: optimization through in-vitro, in-vivo and toxicological evaluation. J Drug Deliv Sci Technol. 2016;36:75–88.

    Article  CAS  Google Scholar 

  2. Mahmood A, Ahmad M, Sarfraz RM, Usman Minhas M. Development of acyclovir loaded β-cyclodextrin-g-poly methacrylic acid hydrogel microparticles: an in vitro characterization. Adv Polym Technol. 2018;37(3):697–705.

    Article  CAS  Google Scholar 

  3. Celebioglu A, Uyar T. Electrospun formulation of acyclovir/cyclodextrin nanofibers for fast-dissolving antiviral drug delivery. Mater Sci Eng C. 2021;118:111514.

    Article  CAS  Google Scholar 

  4. Bhandare R, Londhe V, Ashames A, Shaikh N, Alabdin SZ. Enhanced solubility of microwave-assisted synthesized acyclovir Co-crystals. Res J Pharm Tech. 2020;13:5979–86.

    Article  Google Scholar 

  5. Jermain SV, Brough C, Williams RO III. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery–an update. Int J Pharm. 2018;535(1-2):379–92.

    Article  CAS  PubMed  Google Scholar 

  6. Tambe A, Pandita N. Enhanced solubility and drug release profile of boswellic acid using a poloxamer-based solid dispersion technique. J Drug Deliv Sci Technol. 2018;44:172–80.

    Article  CAS  Google Scholar 

  7. Khan KU, et al. Synthesis of PEG-4000-co-poly (AMPS) nanogels by cross-linking polymerization as highly responsive networks for enhancement in meloxicam solubility. Drug Dev Ind Pharm. 2021:1–12.

  8. Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm. 2005;299(1-2):167–77.

    Article  CAS  PubMed  Google Scholar 

  9. Dong B, Hadinoto K. Amorphous nanoparticle complex of perphenazine and dextran sulfate as a new solubility enhancement strategy of antipsychotic perphenazine. Drug Dev Ind Pharm. 2017;43(6):996–1002.

    Article  CAS  PubMed  Google Scholar 

  10. Naqvi A, et al. Preparation and evaluation of pharmaceutical co-crystals for solubility enhancement of atorvastatin calcium. Polym Bull. 2019.

  11. Yan T, Ji M, Sun Y, Yan T, Zhao J, Zhang H, et al. Preparation and characterization of baicalein/hydroxypropyl-β-cyclodextrin inclusion complex for enhancement of solubility, antioxidant activity and antibacterial activity using supercritical antisolvent technology. J Incl Phenom Macrocycl Chem. 2020;96(3):285–95.

    Article  CAS  Google Scholar 

  12. Morina D, Sessevmez M, Sinani G, Mülazımoğlu L, Cevher E. Oral tablet formulations containing cyclodextrin complexes of poorly water soluble cefdinir to enhance its bioavailability. J Drug Deliv Sci Technol. 2020;57:101742.

    Article  CAS  Google Scholar 

  13. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 2010;62(1):59–82.

    Article  CAS  PubMed  Google Scholar 

  14. Hua D, Jiang J, Kuang L, Jiang J, Zheng W, Liang H. Smart chitosan-based stimuli-responsive nanocarriers for the controlled delivery of hydrophobic pharmaceuticals. Macromolecules. 2011;44(6):1298–302.

    Article  CAS  Google Scholar 

  15. Kayaman-Apohan N, Akyürek E. Synthesis and drug-release properties of biodegradable hydrogels having β-cyclodextrin. Polym Bull. 2013;70(8):2151–67.

    Article  CAS  Google Scholar 

  16. Loftsson T, Brewster ME, Masson M. Role of cyclodextrins in improving oral drug delivery. Am J Drug Deliv. 2004;2(4):261–75.

    Article  CAS  Google Scholar 

  17. Bilensoy E, Hincal AA. Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin Drug Deliv. 2009;6(11):1161–73.

    Article  CAS  PubMed  Google Scholar 

  18. Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R. The application of nanosponges to cancer drug delivery. Expert Opin Drug Deliv. 2014;11(6):931–41.

    Article  CAS  PubMed  Google Scholar 

  19. Giulbudagian M, Hönzke S, Bergueiro J, Işık D, Schumacher F, Saeidpour S, et al. Enhanced topical delivery of dexamethasone by β-cyclodextrin decorated thermoresponsive nanogels. Nanoscale. 2018;10(1):469–79.

    Article  CAS  Google Scholar 

  20. Kendre P, Satav T. Current trends and concepts in the design and development of nanogel carrier systems. Polym Bull. 2019;76(3):1595–617.

    Article  CAS  Google Scholar 

  21. Ali L, Ahmad M, Usman M. Evaluation of cross-linked hydroxypropyl methylcellulose graft-methacrylic acid copolymer as extended release oral drug carrier. Cellul Chem Technol. 2015;49(2):143–51.

    CAS  Google Scholar 

  22. Siepmann J, Peppas NaA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2012;64:163–74.

    Article  Google Scholar 

  23. Hazer O, Soykan C, Kartal Ş. Synthesis and swelling behavior analysis of poly(acrylamidoxime-co-2-acrylamido-2-methylpropane sulfonic acid) hydrogels. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry. 2007;45(1):45–51.

    Article  CAS  Google Scholar 

  24. Kim SJ, Lee CK, Kim SI. Electrical/pH responsive properties of poly (2-acrylamido-2-methylpropane sulfonic acid)/hyaluronic acid hydrogels. J Appl Polym Sci. 2004;92(3):1731–6.

    Article  CAS  Google Scholar 

  25. Pourjavadi A, Barzegar S, Zeidabadi F. Synthesis and properties of biodegradable hydrogels of κ-carrageenan grafted acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid as candidates for drug delivery systems. React Funct Polym. 2007;67(7):644–54.

    Article  CAS  Google Scholar 

  26. Khan KU, Minhas MU, Sohail M, Badshah SF, Abdullah O, Khan S, et al. Synthesis of PEG-4000-co-poly (AMPS) nanogels by cross-linking polymerization as highly responsive networks for enhancement in meloxicam solubility. Drug Dev Ind Pharm. 2021;47(3):465–76.

    Article  CAS  PubMed  Google Scholar 

  27. Rao KM, et al. Novel thermo/pH sensitive nanogels composed from poly (N-vinylcaprolactam) for controlled release of an anticancer drug. Colloids Surf B: Biointerfaces. 2013;102:891–7.

    Article  CAS  Google Scholar 

  28. Bode C, Kranz H, Fivez A, Siepmann F, Siepmann J. Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants. J Control Release. 2019;306:97–107.

    Article  CAS  PubMed  Google Scholar 

  29. Jain S, Ancheria RK, Shrivastava S, Soni SL, Sharma M. An overview of nanogel–novel drug delivery system. Asian Journal of Pharmaceutical Research and Development. 2019;7(2):47–55.

    Article  CAS  Google Scholar 

  30. Minhas MU, et al. Synthesis and characterization of β-cyclodextrin hydrogels: crosslinked polymeric network for targeted delivery of 5-fluorouracil. Drug Deliv. 2016;9:10.

    Google Scholar 

  31. Taleb MA, Hegazy DE, Mahmoud GA. Characterization and in vitro drug release behavior of (2-hydroxyethyl methacrylate)–co-(2-acrylamido-2-methyl-1-propanesulfonic acid) crosslinked hydrogels prepared by ionizing radiation. Int J Polym Mater Polym Biomater. 2014;63(16):840–5.

    Article  CAS  Google Scholar 

  32. Suhail M, Khan A, Rosenholm JM, Minhas MU, Wu PC. Fabrication and characterization of diclofenac sodium loaded hydrogels of sodium alginate as sustained release carrier. Gels. 2021;7(1):10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang W, Wang A. Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly (sodium acrylate) and polyvinylpyrrolidone. Carbohydr Polym. 2010;80(4):1028–36.

    Article  CAS  Google Scholar 

  34. Minhas MU, et al. Functionalized pectin hydrogels by cross-linking with monomer: synthesis, characterization, drug release and pectinase degradation studies. Polym Bull. 2020;77(1):339–56.

    Article  CAS  Google Scholar 

  35. Khalid Q, Ahmad M, Minhas MU. Synthesis of β-cyclodextrin hydrogel nanoparticles for improving the solubility of dexibuprofen: characterization and toxicity evaluation. Drug Dev Ind Pharm. 2017;43(11):1873–84.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Liu Y. Cyclodextrin-based bioactive supramolecular assemblies. Chem Soc Rev. 2010;39(2):495–505.

    Article  CAS  PubMed  Google Scholar 

  37. Sadeghi M, Hosseinzadeh H. Synthesis and super-swelling behavior of a novel low salt-sensitive protein-based superabsorbent hydrogel: collagen-g-poly (AMPS). Turk J Chem. 2010;34(5):739–52.

    CAS  Google Scholar 

  38. Khalid Q, Ahmad M, Usman Minhas M. Hydroxypropyl-β-cyclodextrin hybrid nanogels as nano-drug delivery carriers to enhance the solubility of dexibuprofen: Characterization, in vitro release, and acute oral toxicity studies. Adv Polym Technol. 2018;37(6):2171–85.

    Article  CAS  Google Scholar 

  39. Mutar MA, Radia ND. Controlled release from crosslinked polyacrylic acid as drug delivery theophylline. Irq Nat J Chem. 2012;45:67–85.

    Google Scholar 

  40. Khan KU, Akhtar N, Minhas MU. Poloxamer-407-co-poly (2-acrylamido-2-methylpropane sulfonic acid) cross-linked nanogels for solubility enhancement of olanzapine: synthesis, characterization, and toxicity evaluation. AAPS PharmSciTech. 2020;21:1–15.

    Article  CAS  Google Scholar 

  41. Guo C, et al. Optimization of extended-release ZL-004 nanosuspensions for in vivo pharmacokinetic study to enhance low solubility and compliance. Molecules. 2019;24(1):7.

    Article  CAS  Google Scholar 

  42. Ren X, Qi J, Wu W, Yin Z, Li T, Lu Y. Development of carrier-free nanocrystals of poorly water-soluble drugs by exploring metastable zone of nucleation. Acta Pharm Sin B. 2019;9(1):118–27.

    Article  PubMed  Google Scholar 

  43. Farooq U, et al. Development, characterization and evaluation of anti-fungal activity of miconazole based nanogel prepared from biodegradable polymer. Pak J Pharm Sci. 2020;33(1 (Special)):449.

    PubMed  Google Scholar 

  44. Badshah SF, Akhtar N, Minhas MU, Khan KU, Khan S, Abdullah O, et al. Porous and highly responsive cross-linked β-cyclodextrin based nanomatrices for improvement in drug dissolution and absorption. Life Sci. 2021;267:118931.

    Article  CAS  PubMed  Google Scholar 

  45. Ranjha NM, Qureshi UF. Preparation and characterization of crosslinked acrylic acid/hydroxypropyl methyl cellulose hydrogels for drug delivery. Int J Pharm Pharm Sci. 2014;6(400):410.

    Google Scholar 

  46. Clara I, Lavanya R, Natchimuthu N. pH and temperature responsive hydrogels of poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-methacrylic acid): synthesis and swelling characteristics. J Macromol Sci A. 2016;53(8):492–9.

    Article  CAS  Google Scholar 

  47. Wang Y, et al. Synthesis, characterization, and swelling behaviors of a pH-responsive CMC-g-poly (AA-co-AMPS) superabsorbent hydrogel. Turk J Chem. 2013;37(1):149–59.

    CAS  Google Scholar 

  48. Sohail K, Khan IU, Shahzad Y, Hussain T, Ranjha NM. pH-sensitive polyvinylpyrrolidone-acrylic acid hydrogels: Impact of material parameters on swelling and drug release. Braz J Pharm Sci. 2014;50(1):173–84.

    Article  Google Scholar 

  49. Ghorpade VS, Yadav AV, Dias RJ. Citric acid crosslinked cyclodextrin/hydroxypropylmethylcellulose hydrogel films for hydrophobic drug delivery. Int J Biol Macromol. 2016;93:75–86.

    Article  CAS  PubMed  Google Scholar 

  50. Rastogi PK, Krishnamoorthi S, Ganesan V. Synthesis, characterization, and ion exchange voltammetry study on 2-acrylamido-2-methylpropane sulphonic acid and N-(hydroxymethyl) acrylamide-based copolymer. J Appl Polym Sci. 2012;123(2):929–35.

    Article  CAS  Google Scholar 

  51. Anwar H, Ahmad M, Minhas MU, Rehmani S. Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, optimization and in-vitro characterization. Carbohydr Polym. 2017;166:183–94.

    Article  CAS  PubMed  Google Scholar 

  52. Malik NS, Ahmad M, Minhas MU. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One. 2017;12(2):e0172727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sarfraz RM, et al. Development of β-cyclodextrin-based hydrogel microparticles for solubility enhancement of rosuvastatin: an in vitro and in vivo evaluation. Drug Des Devel Ther. 2017;11:3083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dharmalingam K, Anandalakshmi R. Fabrication, characterization and drug loading efficiency of citric acid crosslinked NaCMC-HPMC hydrogel films for wound healing drug delivery applications. Int J Biol Macromol. 2019;134:815–29.

    Article  CAS  PubMed  Google Scholar 

  55. Kabiri K, et al. Super-alcogels based on 2-acrylamido-2-methylpropane sulphonic acid and poly (ethylene glycol) macromer; 2011.

  56. Ford JL. Thermal analysis of hydroxypropylmethylcellulose and methylcellulose: powders, gels and matrix tablets. Int J Pharm. 1999;179(2):209–28.

    Article  CAS  PubMed  Google Scholar 

  57. Khanum H, Ullah K, Murtaza G, Khan SA. Fabrication and in vitro characterization of HPMC-g-poly (AMPS) hydrogels loaded with loxoprofen sodium. Int J Biol Macromol. 2018;120:1624–31.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang C, Easteal AJ. Study of free-radical copolymerization of N-isopropylacrylamide with 2-acrylamido-2-methyl-1-propanesulphonic acid. J Appl Polym Sci. 2003;88(11):2563–9.

    Article  CAS  Google Scholar 

  59. Cheng W-M, Hu XM, Wang DM, Liu GH. Preparation and characteristics of corn straw-Co-AMPS-Co-AA superabsorbent hydrogel. Polymers. 2015;7(11):2431–45.

    Article  CAS  Google Scholar 

  60. Rao M, Bajaj A, Khole I, Munjapara G, Trotta F. In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J Incl Phenom Macrocycl Chem. 2013;77(1-4):135–45.

    Article  CAS  Google Scholar 

  61. Guo Y, Shalaev E, Smith S. Physical stability of pharmaceutical formulations: solid-state characterization of amorphous dispersions. TrAC Trends Anal Chem. 2013;49:137–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Faculty of Pharmacy, the Islamia University of Bahawalpur, Punjab, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman Minhas.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, S., Akhtar, N., Minhas, M.U. et al. Bi-polymeric Spongy Matrices Through Cross-linking Polymerization: Synthesized and Evaluated for Solubility Enhancement of Acyclovir. AAPS PharmSciTech 22, 181 (2021). https://doi.org/10.1208/s12249-021-02054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02054-2

KEY WORDS

Navigation