Skip to main content

Advertisement

Log in

Current trends and concepts in the design and development of nanogel carrier systems

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nanotechnology, a relatively novel technique, has much potential in smart drug delivery. Development of novel nanosized particulate drug delivery systems (DDS) may help in disease prevention, diagnosis, and treatment of many of the important diseases. Nanogels have particle sizes in the 0–100 nm range, and the three-dimensional network is maintained by varying the solvent quality. This review article describes concisely the current trends and concepts involved in the design and development of nanogel DDS. This review also explores the various approaches of drug loading, release mechanisms, characterization, and biomedical applications. Optimized nanogel systems can be developed on the basis of the site of action and pattern of drug release desired for improved therapeutic benefits. This can be achieved by using the appropriate method of preparation (physical or chemical) and drug loading mechanism by modifying the geometry and surface of the nanogels. The properties of nanogels are dependent on the constituent materials/components (synthetic or natural) and on external stimuli (pH, temperature, ionic strength or incorporation of hydrophilic residues) in the case of stimuli-sensitive nanogels. Due to the high stability, biodegradability, biocompatibility, large surface area, and minimal resources required for manufacture of nanogels, their applications (such as in oral, pulmonary, nasal, ocular, and topical routes) have gained special attention in the development of pharmaceutical drug carriers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Logothetidis S (eds) (2012) Nanostructured materials and their applications, nanoscience and technology, pp 1–20. https://doi.org/10.1007/978-3-642-22227-6-1

  2. Iordana N, Alina GR, Alina D et al (2017) Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 24(1):539–557. https://doi.org/10.1080/10717544.2016.1276232

    Article  CAS  Google Scholar 

  3. Nita LE, Chiriac AP, Diaconu A et al (2016) Multifunctional nanogel with dual temperature and pH responsiveness. Int J Pharm 9(1–2):165–175

    Article  CAS  Google Scholar 

  4. Lai WF, He ZD (2016) Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. J Control Release 243:269–282

    Article  CAS  PubMed  Google Scholar 

  5. Patel H, Patel J (2010) Nanogel as controlled drug delivery. Int J Pharm Sci Rev Res 4(2):37–41

    CAS  Google Scholar 

  6. Vinogradov SV, Batrakova EV, Kabanov AV (1999) Poly (ethylene glycol) polyethyleneimine nanogel particles: novel drug delivery system for antisense oligonucleotides. Colloids Surf B Biointerfaces 16:291–304

    Article  CAS  Google Scholar 

  7. Dorwal D (2012) Nanogels as novel and versatile pharmaceuticals. Int J Pharm Sci 4(3):67–74

    CAS  Google Scholar 

  8. Shrinivas G, Ramnathkar P (2014) Polymer based microgels/nanogels: development & application in drug delivery. Am J Pharmatech Res 4(1):270–282

    Google Scholar 

  9. Soni G, Yadav KS (2016) Nanogels as potentioal nanomedicine carrier for treatment of cancer. A mini review of the state of the art. Suadi Pharm J 24(2):133–139

    Article  Google Scholar 

  10. Prasad K, Vijay G, Jayakumari N et al (2015) Nanogel as a smart vehicle for local drug delivery in dentistry. Am J Pharm Health Res 3(1):20–30

    Google Scholar 

  11. Rigogliuso S, Satatino MA, Adamo G et al (2012) Polymeric nanogels: nanocarriers for drug delivery application. Chem Eng Trans 27:247–252

    Google Scholar 

  12. Tan JP, Tan MB, Tam MK (2010) Application of nanogel systems in the administration of local anesthetics. Local Reg Anesth 3:93–100

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Daoud-Mahammed S, Couvreur P, Gref R (2007) Novel self-assembling nanogel’s stability and lyophilisation studies. Int J Pharm 332(1–2):185–191

    Article  CAS  PubMed  Google Scholar 

  14. Escalona Rayo O, Quintanar Guerrero D (2014) Polymeric nanogels: a new alternative for drug delivery. Rev Mex Cienc Farm 45(3):17–38

    Google Scholar 

  15. Pich A, Richtering W (2012) Polymer nanogels and microgels. In: Matyjaszewski K, Moller M (eds) Polymer science: a comprehensive reference, vol 6. Elsevier, Amsterdam, pp 309–350

    Chapter  Google Scholar 

  16. Dong Y, Ng WK, Shen S et al (2013) Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohydr Polym 94(2):940–945

    Article  CAS  PubMed  Google Scholar 

  17. Kabanov AV, Vinogradov SV (2009) Nanogel as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed Engl 48(30):5418–5429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferreira SA, Pereira P, Sampaio P et al (2011) Supramolecular assembled nanogel made of mannan. J Colloid Interface Sci 361(1):97–108

    Article  CAS  PubMed  Google Scholar 

  19. Ohya Y, Shiratani M, Koayashi H et al (1994) Release behaviour of 5-Fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell-specific cytotoxicity. J Macromol Sci, Pure Appl Chem 31:629–642

    Article  Google Scholar 

  20. Nie G, Hah HJ, Kim G et al (2012) Hydrogel nanoparticles with covalently linked coomassie blue for brain tumour delineation visible to the surgeon. Small 8(6):884–891

    Article  CAS  PubMed  Google Scholar 

  21. Luo R, Cao Y, Shi P et al (2014) Near-infrared light responsive multicompartmental hydrogel particles synthesized through droplets assembly induced by superhydrophobic surface. Small 10(23):4886–4894

    Article  CAS  PubMed  Google Scholar 

  22. Siepmann J, Peppas NA (2000) Hydrophilic matrices for controlled drug delivery: an improved mathematical model to predict the resulting drug release kinetics (the “sequential layer” model). Pharm Res 17:1290–1298

    Article  CAS  PubMed  Google Scholar 

  23. Chen T, Zhao D, Wei Y et al (2013) Core-shell nanocarriers with Zno quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohydr Polym 92:1124–1132

    Article  CAS  PubMed  Google Scholar 

  24. Kozlovskaya V, Alexander JF, Wang Y et al (2014) Internalization of red blood cell-mimicking hydrogel capsules with pH-triggered shape responses. ACS Nano 8(6):5725–5737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bagre AP, Jain K, Jain NK (2013) Alginate coated chitosan core shell nanoparticless for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm 456:31–40

    Article  CAS  PubMed  Google Scholar 

  26. Wani T, Muzamil R, Kumar M et al (2004) Targeting aspects of nanogels: an overview. Int J Pharm Sci Nanotech 7(4):2613–2614

    Google Scholar 

  27. Singh N, Gill V, Gill P (2013) Nanogel based artificial chaperone technology: an overview. Am J Adv Drug Deliv 1(3):271–276

    CAS  Google Scholar 

  28. Rossetti H, Albizzati D, Alfano M (2002) Decomposition of formic acid in a water solution employing the photo-fenton reaction. Ind Eng Chem Res 41:1436–1444

    Article  CAS  Google Scholar 

  29. Sultana F, Manirujjaman M, Imran-Ul-Haque MA et al (2013) An overview of nanogel drug delivery system. J Appl Pharm Sci 3(8):95–105

    Google Scholar 

  30. Adhikari B, Sowmya C, Reddy C (2016) Recent advances in nanogel drug delivery system. World J Pharm Pharma Sci 5(9):505–522

    CAS  Google Scholar 

  31. Akiyoshi K, Kang E, Kuromada S et al (2000) Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly (n-isopropylacrylamides). Macromolecules 33:3244–3249

    Article  CAS  Google Scholar 

  32. Gros L, Ringsdorf H, Schupp H (1981) Polymeric antitumor agents on a molecular and on a cellular level. Chem Angew 20:305–325

    Article  Google Scholar 

  33. Yong Y, Cheng H, Zhang Z et al (2008) Cellular internalization and in vivo tracking of thermosensitive luminescent micelles based on luminescent lanthanide chelate. Am Chem Soc 1(2):125–133

    Google Scholar 

  34. Park W, Park S, Na K (2010) Potential of self organizing nanogel with acetylated chondriotin sulfate as an anti-cancer drug carrier. Colloids Surf 79:501–518

    Article  CAS  Google Scholar 

  35. Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64:866–884

    Article  CAS  PubMed  Google Scholar 

  36. Schwerdt A, Zintchenko A, Concia M et al (2008) Hyperthermia-induced targeting of thermosensitive gene carriers to tumors. Hum Gene Ther 19:1283–1292

    Article  CAS  PubMed  Google Scholar 

  37. Rejinold NS, Chennazhi KP, Nair SV et al (2011) Biodegradable and thermo-sensitive chitosan-g-poly (n-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydr Polym 83:776–786

    Article  CAS  Google Scholar 

  38. Stocke NA, Arnold SM, Zach Hilt J (2015) Responsive hydrogel nanoparticles for pulmonary delivery. J Drug Deliv Sci Technol 29:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patnaik S, Ashwani KS, Gandhi GR et al (2007) Photoregulation of drug release in azo-dextran nanogels. Int J Pharm 342:184–193

    Article  CAS  PubMed  Google Scholar 

  40. LaConte L, Nitin N, Bao G (2005) Magnetic nanoparticle probes. Mater Today 8:32–38

    Article  Google Scholar 

  41. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  PubMed  Google Scholar 

  42. Blackburn WH, Dickerson EB, Smith MH et al (2009) Peptide-functionalized nanogels for targeted siRNA delivery. Bioconj Chem 20:960–968

    Article  CAS  Google Scholar 

  43. Bhuchar N, Sunasee R, Ishihara K et al (2012) Degradable thermoresponsive nanogels for protein encapsulation and controlled release. Bioconj Chem 23(1):75–83

    Article  CAS  Google Scholar 

  44. Choi WI, Lee JH, Kim JY et al (2012) Efficient skin permeation of soluble proteins via flexible and functional nano-carrier. J Control Release 157(2):272–278

    Article  CAS  PubMed  Google Scholar 

  45. Maya S, Jayakumar R, Uthaman S (2014) Carbohydrate based nanogels as drug and gene delivery systems. J Nanosci Nanotech 14:696–697

    Google Scholar 

  46. Alles N, Soysa N, Hussain M et al (2009) Polysaccharide nanogel delivery of a TNF-α and RANKL antagonist peptide allows systemic prevention of bone loss. Euro J Pharm Sci 37:83–88

    Article  CAS  Google Scholar 

  47. Lee J, Kim J, Yoo H (2009) DNA nanogels composed of chitosan and pluronic with thermo-sensitive and photo crosslinking properties. Int J Pharm 373:93–99

    Article  CAS  PubMed  Google Scholar 

  48. Jaiswal M, Banerjee R, Pradhan P et al (2010) Thermal behaviour of magnetically modalized poly (nisopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf 81(1):185–194

    Article  CAS  Google Scholar 

  49. Yan L, Tao W (2010) One step synthesis of paginated cationic nanogel of polly(n, n-dimethyl-aminoethyl methacrylate) in aqueous solution via self stabilizing micelle using an amphiphilic macro raft agent. Polymer 51:2161–2167

    Article  CAS  Google Scholar 

  50. Nukolova NV, Yang Z, Kim JO et al (2011) Polyelectrolyte nanogels decorated with monoclonal antibody for targeted drug delivery. React Funct Polym 71:315–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eckmann DM, Composto RJ, Tsourkas A et al (2014) Nanogel carrier design for targeted drug delivery system. J Mater Chem B Mater Biol Med 2(46):8085–8097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical application. Polymers 3(3):1215–1242

    Article  CAS  Google Scholar 

  53. Phatak A, Chaudhari P (2012) Development & evaluation of nanogel as carrier for transdermal drug delivery of aceclofenac. Asian J Pharm Tech 4(2):126–127

    Google Scholar 

  54. Avasatthi V, Pawar H, Dora C (2014) A novel nanogel formulation of methotrexate for topical treatment of psoriasis: optimization, in-vitro and in-vivo evaluation. Pharm Dev Technol 21(5):554–562

    Google Scholar 

  55. Khurana S, Bedi PM, Jain NK (2013) Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem Phys Lipids 175–176:65–72

    Article  CAS  PubMed  Google Scholar 

  56. Lei Wu, Zhou Hui, Sun Hao-Jan et al (2013) Thermoresponsive bc whisker/poly (nipam-co-bma) nanogel complexes: synthesis, characterization. Biomacromolecules 14:1078–1084

    Article  CAS  Google Scholar 

  57. Mbuya V, Gupta N, Tashi T (2016) Application of nanogel’s in reduction of drug resistance in cancer chemotherapy. J Chem Pharm Res 8(2):561

    Google Scholar 

  58. Zhongming W, Xinge Z, Honglei G et al (2010) An injectable and glucose-sensitive nanogel for controlled insulin release. J Mater Chem 22:22788–22796

    Google Scholar 

  59. Vinogradov S, Batrakova E, Kabanov A (2004) Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 15(1):50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abd E, Swilem A, Klingner A et al (2004) Developing the potential ophthalmic applications of pilocarpine entrapped into polyvinylpyrrolidone-poly (acrylic acid) nano gel dispersions prepared by γ radiation. Biomacromolecules 4(3):688–698

    Google Scholar 

  61. Goel A, Ahmad F, Singh R et al (2009) Anti-Inflammatory activity of nanogel formulation of 3-acetyl-11-keto-β-boswellic acid. Pharmacologyonline 33:11–318

    Google Scholar 

  62. Michael L, Eric S, Qin A et al (2013) Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice. J Clin Investig 123(4):1741–1749

    Article  CAS  Google Scholar 

  63. Daithankar A, Shiradkar M (2012) Thermoreversible anesthetic gel for periodontal intra-pocket delivery of mepivacaine hydrochloride. Der Pharmacia Letter 4(3):889–896

    CAS  Google Scholar 

  64. Jeremy P, Maureen B, Michael K (2010) Application of nanogel systems in the administration of local anesthetics. Local Reg Anesth 3:93–100

    Google Scholar 

  65. Sahoo C, Nayak P, Sarangi D et al (2013) Intra vaginal drug delivery system: an overview. Am J Adv Drug Deliv 1(1):43–55

    Google Scholar 

  66. Khan A, Saha C (2014) A review on vaginal drug delivery system. RGUHS J Pharm Sci 4:142–147

    Article  Google Scholar 

  67. Sreejan M, Uppadi S, Manasa R et al (2016) Bioadhesive HPMC gel containing gelatin nanoparticles for intravaginal delivery of tenofovir. J Appl Pharma Sci 6(8):22–29

    Google Scholar 

  68. Dorwal D (2012) Nanogels as novel and versatile pharmaceuticals. Int J Pharm Pharm Sci 4(3):67–74

    CAS  Google Scholar 

  69. Vinogradov SV, Batrakova EV, Kabanov AV (1999) Poly(ethylene glycol) polyethyleneimine Nanogel particles: novel drug delivery system for antisense oligonucleotides Coll. Surf B Biointerfaces 16:291–304

    Article  CAS  Google Scholar 

  70. Missirlis D, Tirelli N, Kawamura R et al (2005) Preparation, characterization and preliminary assessment as new colloidal drug carriers. Amphiphilic Hydrogel Nanoparticles 21:2605–2613

    CAS  Google Scholar 

  71. Alles N, Soysa NS, Hussain MD et al (2009) Polysaccharide nanogel delivery of a TNF-alpha and RANKL antagonist peptide allows systemic prevention of bone loss. Eur J Pharm Sci 37(2):83–88

    Article  CAS  PubMed  Google Scholar 

  72. Yao Y, Xia M, Wang H et al (2016) Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin. Eur J Pharm Sci 91:144–153

    Article  CAS  PubMed  Google Scholar 

  73. Yu S, Hu J, Pan X et al (2006) Stable and pH-sensitive nanogel’s prepared by self-assembly of chitosan and ovalbumin. Langmuir 22(6):2754–2759

    Article  CAS  PubMed  Google Scholar 

  74. Yang HN, Choi JH, Park JS et al (2014) Differentiation of endothelial progenitor cells into endothelial cells by Heparin-modified supramolecular Pluronic nanogels encapsulating bFGF and complexed with VEGF165 genes. Biomaterials 35(16):4716–4728

    Article  CAS  PubMed  Google Scholar 

  75. Yang C, Wang X, Yao X et al (2015) Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery. J Control Release 205:206–217

    Article  CAS  PubMed  Google Scholar 

  76. Wu D, Wan M (2008) A novel fluorideanion modified gelatin nanogel system for ultrasound. J Pharm Pharm Sci 11(4):32–45

    Article  CAS  PubMed  Google Scholar 

  77. Pourjavadi A, Hosseini SH, Alizadeh M et al (2014) Magnetic pH-responsive nanocarrier with long spacer length and high colloidal stability for controlled delivery of Doxorubicin. Colloids Surf B Biointerfaces 116:49–54

    Article  CAS  PubMed  Google Scholar 

  78. Rossetti H, Albizzati D, Alfano M (2002) Decomposition of formic acid in a water solution employing the photo-fenton reaction. Ind Eng Chem Res 41:1436–1444

    Article  CAS  Google Scholar 

  79. Sultana F, Manirujjaman M, Imran-Ul-Haque MA et al (2013) An overview of nanogel drug delivery system. J Appl Pharm Sci 3(8):95–105

    Google Scholar 

  80. Ghorbaniazar P, Sepehrianazar A, Eskandani M et al (2015) Preparation of poly acrylic acid-poly acrylamide composite nanogels by radiation technique. Adv Pharm Bull 5(2):269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Koul V, Mohamed R, Kuckling D et al (2011) Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse microemulsion technique: synthesis and characterization. Colloids Surf B Biointerfaces 83(2):204–213

    Article  CAS  PubMed  Google Scholar 

  82. Rashed ER, Abd HA, EI Ghazaly MA (2015) Potential efficacy of dopamine loaded-PVP/PAA nanogel in experimental models of parkinsonism: possible disease modifying activity. J Biomed Mater Res A 103(5):1713–1720

    Article  CAS  PubMed  Google Scholar 

  83. Ablomaali SS, Tamaddon AM, Mohammadi S et al (2016) Chemically crosslinked nanogels of PEGylated poly ethyleneimine (l-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: cytocompatibility, cellular delivery and antitumor activity in resistant cells. Mater Sci Eng, C 62:897–907

    Article  CAS  Google Scholar 

  84. Schiavo S, Duroudier N, Bilbao E et al (2017) Effects of PVP/PEI coated and uncoated silver nanoparticles and PVP/PEL coating agent on three species of marine microalgae. Sci Total Environ 577:45–53

    Article  CAS  PubMed  Google Scholar 

  85. Liu T, Liu H, Wu Z et al (2014) The use of poly (methacrylic acid) nanogel to control the release of Amoxycillin with lower cytotoxicity. Mater Sci Eng C Mater Biol Appl 43:622–629

    Article  CAS  PubMed  Google Scholar 

  86. Wu W, Shen J, Banerjee P et al (2010) Chitosan based responsive hybrid nanogel’s for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31(32):8371–8381

    Article  CAS  PubMed  Google Scholar 

  87. Ekkelenkamp AE, Jansman MM, Roelofs K et al (2016) Surfactant free preparation of highly stable zwitterionic poly (amidoamine) nanogels with cytotoxicity. Acta Biomater 30:126–134

    Article  CAS  PubMed  Google Scholar 

  88. Lockhart JN, Beezer DB, Stevens DM, Spears BR, Harth E (2016) One-pot polyglycidol nanogel’s via liposome master templates for dual drug delivery. J Control Release 244(Pt B):366–374

    Article  CAS  PubMed  Google Scholar 

  89. Okur AC, Erkoc P, Kizilel S (2016) Targeting cancer cells via tumor-homing peptide CREKA functional PEG nanoparticles. Colloids Surf B Biointerfaces 147:197–200

    Article  CAS  Google Scholar 

  90. De Leon AS, Molina M, Wedepohl S et al (2016) Immobilization of stimuli-responsive nanogel’s onto honey comb porous surfaces and controlled release of proteins. Langmuir 32(7):1854–1862

    Article  CAS  PubMed  Google Scholar 

  91. Sun H, Meng F, Cheng R, Deng C et al (2014) Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apotosis. Acta Biomater 10(5):2159–2168

    Article  CAS  PubMed  Google Scholar 

  92. Lou S, Gao S, Wang W et al (2015) Galactose functionalized multi-responsive nanogels for hepatoma-targeted drug delivery. Nanoscale 7(7):3137–3146

    Article  CAS  PubMed  Google Scholar 

  93. Ma K, Xu Y, An Z et al (2015) Templateless synthesis of polyacrylamide-based nanogels via RAFT dispersion polymerization. Macromol Rapid Common 36(6):566–570

    Article  CAS  Google Scholar 

  94. Abu Samah NH, Heard CM (2014) The effects of topically applied polyNIPAM-based nanogels and their monomers on skin cyclo-oxygenase expression, ex vivo. Nanotoxicology 8(1):100–106

    Article  CAS  PubMed  Google Scholar 

  95. Teo J, McCarroll JA, Boyer C et al (2016) A rationally optimized nanoparticle system for delivery of RNA interference therapeutics into pancreatic tumors in vivo. Biomacromolecules 17(7):2337–2351

    Article  CAS  PubMed  Google Scholar 

  96. Nash MA, Gaub HE (2012) Single molecule adhesion of a stimuli-responsive oligo (ethylene glycol) copolymer to gold. ACS Nano 6(12):10735–10741

    Article  CAS  PubMed  Google Scholar 

  97. Peng PC, Hsieh CM, Chen CP et al (2016) Assessment of photodynamic inactivation against periodontal bacteria mediated by a chitosan hydrogel in a 3D gingival model. Int J Mol Sci 17(11):1–13

    Article  CAS  Google Scholar 

  98. Lee VY, Havenstrite K, Tjio M et al (2011) Nanogel star polymer architectures: a nanoparticle platform for modular programmable macromolecular self-assembly, intercellular transport, and dual-mode cargo delivery. Adv Mater 23(39):4509–4515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu W, Shen J, Banerjee P et al (2010) Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31(32):8371–8381

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Kendre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kendre, P.N., Satav, T.S. Current trends and concepts in the design and development of nanogel carrier systems. Polym. Bull. 76, 1595–1617 (2019). https://doi.org/10.1007/s00289-018-2430-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2430-y

Keywords

Navigation