Skip to main content

Advertisement

Log in

Nanoemulgel for Improved Topical Delivery of Desonide: Formulation Design and Characterization

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This research aimed to develop a novel drug delivery system to improve treatment of skin disorders. The system is comprised of a Carbopol 980-based nanoemulgel (NE-gel) containing a desonide (DES; 0.05%, w/w) nanoemulsion (NE), which has a small particle size, high encapsulation efficiency, good thermodynamic stability, good permeation ability, and high skin retention. DES-loaded NE (DES-NE) was prepared by high-pressure homogenization. The developed formulation was characterized by differential scanning calorimetry (DSC), X-ray diffraction, drug release, skin permeation, and drug retention. DES in vitro release and skin permeation studies with different formulations of artificial membrane and rat abdominal skin were performed with the Franz diffusion cell system. Confocal laser scanning microscopy (CLSM) was used to detect the localization and permeation pathways of drugs in the skin. Compared with commercially available gel (CA-gel) and NE, the NE-gel release process conformed to the Higuchi release model (R2 = 0.9813). NE-gel prolonged the drug release time and allowed for reduced administration dose and frequency. The unit cumulative permeation of NE and NE-gel through the skin for 12 h was 63.13 ± 2.78 and 42.53 ± 2.06 μg/cm2, respectively, values significantly higher (p < 0.01) than that of the CA-gel (30.65 ± 1.25 μg/cm2) and CA-cream (15.21 ± 0.97 μg/cm2). The DES-NE and DES NE-gel skin drug retention was significantly higher than commercially available formulations (p < 0.01). Hence, the prepared NE-gel is a potential vehicle for improved topical DES delivery for better treatment of skin disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ali MS, Alam MS, Alam N, Siddiqui MR. Preparation, characterization and stability study of dutasteride loaded nanoemulsion for treatment of benign prostatic hypertrophy. Iran J Pharm Res. 2014;13(4):1125–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gelbard CM, Hebert AA. Desonide hydrogel: advances in vehicle technology. Expert Rev Dermatol. Taylor & Francis. 2009;4:23–7.

    Article  CAS  Google Scholar 

  3. Pradhan M, Singh D, Singh MR. Influence of selected variables on fabrication of Triamcinolone acetonide loaded solid lipid nanoparticles for topical treatment of dermal disorders. Artif Cells Nanomed Biotechnol. 2016;44(1):392–400.

    Article  CAS  PubMed  Google Scholar 

  4. Antonow MB, Lorenzoni R, Barbosa GM, Ourique AF, Gomes P, Raffin RP. Development and physicochemical characterization of desonide-loaded nanocapsule suspensions. Adv Mater Sci Eng. 2016;2016:1–12.

    Article  CAS  Google Scholar 

  5. Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, et al. Nanotechnology in therapeutics: A focus on nanoparticles as a drug delivery system. Nanomedicine. 2012;7(8):1253–71.

    Article  CAS  PubMed  Google Scholar 

  6. Mahtab A, Anwar M, Mallick N, Naz Z, Jain GK, Ahmad FJ. Transungual delivery of ketoconazole nanoemulgel for the effective management of onychomycosis. AAPS PharmSciTech. 2016;17(6):1477–90.

    Article  CAS  PubMed  Google Scholar 

  7. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123–7.

    Article  PubMed  Google Scholar 

  8. Kaur A, Katiyar SS, Kushwah V, Jain S. Nanoemulsion loaded gel for topical co-delivery of clobitasol propionate and calcipotriol in psoriasis. Nanomedicine. 2017;13(4):1473–82.

    Article  CAS  PubMed  Google Scholar 

  9. Somagoni J, Boakye CHA, Godugu C, Patel AR, Faria HAM, Zucolotto V, et al. Nanomiemgel - A novel drug delivery system for topical application - In vitro and in vivo evaluation. PLoS One. 2014;e115952.

  10. Sutradhar KB, Amin L. Nanoemulsions: Increasing possibilities in drug delivery. Eur J Nanomed. 2013;5(2):97–110.

    Article  Google Scholar 

  11. Shaker DS, Ishak RAH, Ghoneim A, Elhuoni MA. Nanoemulsion: a review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Sci Pharm. 2019;87(3):17.

    Article  CAS  Google Scholar 

  12. Chellapa P, Mohamed AT, Keleb EI, Elmahgoubi A, Eid AM, Issa YS, et al. Nanoemulsion and nanoemulgel as a topical formulation. IOSR J Pharm. 2015;5:43–7.

    CAS  Google Scholar 

  13. Sharma A, Singh AP, Harikumar SL. Development and optimization of nanoemulsion based gel for enhanced transdermal delivery of nitrendipine using box-behnken statistical design. Drug Dev Ind Pharm. 2020;46(2):329–42.

    Article  CAS  PubMed  Google Scholar 

  14. Krahn CL, Raffin RP, Santos GS, Queiroga LB, Cavalcanti RL, Serpa P, et al. Isoflurane-loaded nanoemulsion prepared by high-pressure homogenization: Investigation of stability and dose reduction in general anesthesia. J Biomed Nanotechnol. 2012;8(5):849–58.

    Article  CAS  PubMed  Google Scholar 

  15. Belletti D, Vandelli MA, Tonelli M, Zapparoli M, Forni F, Tosi G, et al. Functionalization of liposomes: microscopical methods for preformulative screening. J Liposome Res. 2015;25(2):150–6.

    Article  CAS  PubMed  Google Scholar 

  16. Azeem A, Rizwan M, Ahmad FJ, Iqbal Z, Khar RK, Aqil M, et al. Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech. 2009;10(1):69–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dasgupta S, Dey S, Choudhury S, Mazumder B. Topical delivery of aceclofenac as nanoemulsion comprising excipients having optimum emulsification capabilities: preparation, characterization and in vivo evaluation. Exp Opin Drug Deliv. 2013;10(4):411–20.

    Article  CAS  Google Scholar 

  18. Ahmad J, Gautam A, Komath S, Bano M, Garg A, Jain K. Topical nano-emulgel for skin disorders: formulation approach and characterization. Recent Pat Antiinfect Drug Discov. 2019;14(1):36–48.

    Article  CAS  PubMed  Google Scholar 

  19. Modi JD, Patel JK. Nanoemulsion-based gel formulation of aceclofenac for topical delivery. Int J. 2011;1(1):6–12.

    Google Scholar 

  20. Kaur R, Ajitha M. Formulation of transdermal nanoemulsion gel drug delivery system of lovastatin and its in vivo characterization in glucocorticoid induced osteoporosis rat model. J Drug Deliv Sci Technol. 2019;52:968–78.

    Article  CAS  Google Scholar 

  21. Jangdey MS, Gupta A, Saraf S. Fabrication, in-vitro characterization, and enhanced in-vivo evaluation of carbopol-based nanoemulsion gel of apigenin for uv-induced skin carcinoma. Drug Deliv. 2017;24(1):1026–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garg BJ, Garg NK, Beg S, Singh B, Katare OP. Nanosized ethosomes-based hydrogel formulations of methoxsalen for enhanced topical delivery against vitiligo: Formulation optimization, in vitro evaluation and preclinical assessment. J Drug Target. 2016;24(3):233–46.

    Article  CAS  PubMed  Google Scholar 

  23. Mohammed MI, Makky AMA, Teaima MHM, Abdellatif MM, Hamzawy MA, Khalil MAF. Transdermal delivery of vancomycin hydrochloride using combination of nano-ethosomes and iontophoresis: in vitro and in vivo study. Drug Deliv. 2016;23(5):1558–64.

    CAS  PubMed  Google Scholar 

  24. Mou D, Chen H, Du D, Mao C, Wan J, Xu H, et al. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm. 2008;353(1-2):270–6.

    Article  CAS  PubMed  Google Scholar 

  25. Abdellatif MM, Khalil IA, Khalil MAF. Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: In-vitro, ex-vivo and in-vivo evaluation. Int J Pharm. 2017;527(1-2):1–11.

    Article  CAS  PubMed  Google Scholar 

  26. Radhika PR, Guruprasad S. Nanoemulsion based emulgel formulation of lipophilic drug for topical delivery. Int J PharmTech Res. 2016;9(6):210–23.

    CAS  Google Scholar 

  27. Levy MY, Schutze W, Fuhrer C, Benita S. Characterization of diazepam submicron emulsion interface: role of oleic acid. J Microencapsul. 1994;11(1):79–92.

    Article  CAS  PubMed  Google Scholar 

  28. Osborne DW. Diethylene glycol monoethyl ether: an emerging solvent in topical dermatology products. J Cosmet Dermatol. 2011;10(4):324–9.

    Article  PubMed  Google Scholar 

  29. Barakat N. Formulation design of indomethacin-loaded nanoemulsion for transdermal delivery. Pharm Anal Acta. 2011;2:1–8.

    Google Scholar 

  30. Javadzadeh Y, Adibkia K, Hamishekar H. Transcutol® (diethylene glycol monoethyl ether): a potential penetration enhancer. In: Dragicevic N, Maibach H, editors. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Berlin: Springer; 2015. p. 195–205.

    Chapter  Google Scholar 

  31. Bialik W, Walters KA, Brain KR, Hadgraft J. Some factors affecting the in vitro penetration of ibuprofen through human skin. Int J Pharm. 1993;92(1-3):219–23.

    Article  CAS  Google Scholar 

  32. Alam M, Sajid M, Alam N, Alam M, Anwer T, Imam F, et al. Design and characterization of nanostructure topical gel of betamethasone dipropionate for psoriasis. J Appl Pharm Sci. 2012;2:148–58.

    Google Scholar 

  33. Herman A, Herman AP. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review. J Pharm Pharmacol. 2015;67(4):473–85.

    Article  CAS  PubMed  Google Scholar 

  34. Sivakumar M, Tang SY, Tan KW. Cavitation technology - a greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrason Sonochem. 2014.

  35. Schmidts T, Dobler D, Nissing C, Runkel F. Influence of hydrophilic surfactants on the properties of multiple W/O/W emulsions. J Colloid Interface Sci. 2009;338(1):184–92.

    Article  CAS  PubMed  Google Scholar 

  36. Mahdi ES, Sakeena MH, Abdulkarim MF, Abdullah GZ, Sattar MA, Noor AM. Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters. Drug Des Devel Ther. 2011;5:311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Capek I. Degradation of kinetically-stable o/w emulsions. Adv Colloid Interf Sci. 2004;107(2-3):125–55.

    Article  CAS  Google Scholar 

  38. Baspinar Y, Keck CM, Borchert HH. Development of a positively charged prednicarbate nanoemulsion. Int J Pharm. 2010;383(1-2):201–8.

    Article  CAS  PubMed  Google Scholar 

  39. Junghanns JU, Buttle I, Müller RH, Araújo IB, Silva AKA, Egito EST, et al. SolEmuls® technology: A way to overcome the drawback of parenteral administration of insoluble drugs. Pharm Dev Technol. 2008;12(5):437–45.

    Article  CAS  Google Scholar 

  40. Maia CS, Mehnert W, Schaller M, Korting HC, Gysler A, Haberland A, et al. Drug targeting by solid lipid nanoparticles for dermal use. J Drug Target. 2002;10(6):489–95.

    Article  CAS  Google Scholar 

  41. Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: Recent advances and future prospects. Expert Opin Drug Deliv. 2014;11(3):393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ding Z, Jiang Y, Liu X. Nanoemulsios-based drug delivery for brain tumors. Nanotechnol-Based Target Drug Deliv Syst Brain Tumors. 2018:327–58.

  43. Ahmad N, Ahmad R, Al-Qudaihi A, Alaseel SE, Fita IZ, Khalid MS, et al. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Adv. 2019;9(35):20192–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oh DH, Kang JH, Kim DW, Lee BJ, Kim JO, Yong CS, et al. Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier. Int J Pharm. 2011;420(2):412–8.

    Article  CAS  PubMed  Google Scholar 

  45. Ahmad J, Mir SR, Kohli K, Amin S. Effect of oil and co-surfactant on the formation of Solutol HS 15 based colloidal drug carrier by Box-Behnken statistical design. Colloids Surf A Physicochem Eng Asp. 2014;453:68–77.

    Article  CAS  Google Scholar 

  46. Ouyang L, Wu Z, Wang J, Qi X, Li Q, Wang J, et al. The effect of solid content on the rheological properties and microstructures of a Li-ion battery cathode slurry. RSC Adv. 2020;10(33):19360–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xue D, Sethi R. Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles. J Nanopart Res. 2012;14(11):1–14.

    Article  CAS  Google Scholar 

  48. Sengupta P, Chatterjee B. Potential and future scope of nanoemulgel formulation for topical delivery of lipophilic drugs. Int J Pharm. Elsevier B.V. 2017;526:353–65.

    Article  CAS  PubMed  Google Scholar 

  49. Arora R, Aggarwal G, Harikumar SL, Kaur K. Nanoemulsion based hydrogel for enhanced transdermal delivery of ketoprofen. Adv Pharm. 2014;2014.

  50. Frelichowska J, Bolzinger M, Pelletier J, Valour J, Chevalier Y. Topical delivery of lipophilic drugs from o/w Pickering emulsions. Int J Pharm. 2009;371(1-2):56–63.

    Article  CAS  PubMed  Google Scholar 

  51. Shah PP, Desai RP, Channer D, Singh M. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J Control Release. 2012;161(3):735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hussain A, Samad A, Singh SK, Ahsan MN, Haque MW, Faruk A, et al. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv. 2016;23(2):642–7.

    Article  CAS  PubMed  Google Scholar 

  53. Kong M, Chen XG, Kweon DK, Park HJ. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydr Polym. 2011;86(2):837–43.

    Article  CAS  Google Scholar 

  54. Zheng Y, Ouyang WQ, Wei YP, Syed SF, Hao CS, Wang BZ, et al. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: A skin permeation study. Int J Nanomedicine. 2016;11:5971–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Changez M, Varshney M, Chander J, Dinda AK. Effect of the composition of lecithin/n-propanol/isopropyl myristate/water microemulsions on barrier properties of mice skin for transdermal permeation of tetracainehydrochloride: in vitro. Colloids Surf B: Biointerfaces. 2006;50(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  56. Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J Nanobiotechnol. 2008;6(1):1–11.

    Article  CAS  Google Scholar 

  57. Fuchs E. Beauty is skin deep: the fascinating biology of the epidermis and its appendages. Harvey Lect. 1998;94:47–77.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Project of Guangdong Province (grant numbers 201802010047); Innovation and Entrepreneurship Team special Fund project of Guangdong Province (grant numbers 2014ZT05Y018), and Biomedical Innovation Institution of Hong Kong & Guangdong Pharmaceutical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaqing Lin.

Ethics declarations

Ethics approval

Animal experiments were performed according to internationally accepted ethical guidelines for the care of laboratory animals, and were approved by the Institutional Animal Care and Use Committee of Guangdong Pharmaceutical University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We report a nanoemulgel system with good penetrating ability and a sustained release effect that can reduces adverse reactions and side effects caused by clinical medication overdose. Here, we examine the preparation, characterization, permeability, release kinetics, rheology, and topical mechanism of a nanoemulgel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Zhang, J., Lu, B. et al. Nanoemulgel for Improved Topical Delivery of Desonide: Formulation Design and Characterization. AAPS PharmSciTech 22, 163 (2021). https://doi.org/10.1208/s12249-021-02035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02035-5

KEY WORDS

Navigation