Skip to main content

Advertisement

Log in

A New Approach for Dry Eye Management By Mucoadhesive In situ Gel of Vitamin B12: Formulation, In vitro and In vivo Assessment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

A Correction to this article was published on 06 April 2021

This article has been updated

Abstract

The commitment of the existent study was to develop a mucoadhesive in situ gel systems of vitamin B12 for the management of dry eye disease. The gels were prepared using pluronic F-127 and either of chitosan, carbapol 971P, sodium alginate, or hydroxy propyl methyl cellulose. Drug-excipients compatibility was investigated by means of differential scanning calorimetry and Fourier transform infrared spectroscopy. The gels were characterized for pH, clarity, gelling capacity, viscosity, and adhesion. In vitro release of vitamin B12 from the selected gels was investigated. In vivo effectiveness of the selected gel was determined in rabbit models using Schirmer’s and fluorescein tests. The compatibility studies revealed the possibility of incidence of drug/polymer interaction in some formulations. F2-containing pluronic F127 and hydroxypropyl methyl cellulose showed the most appropriate physical characterization and in vitro release profile. The prepared gels showed prolonged drug release with drug release mechanism of combined diffusion and erosion. The in vivo study revealed good effectiveness of the prepared mucoadhesive in situ gel system of vitamin B12 in the treatment of dry eye disease that was comparable to that of the marketed drops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Vehof J, Kozareva D, Hysi PG, Hammond CJ. Prevalence and risk factors of dry eye disease in a British female cohort. Br J Ophthalmol. 2014;98(12):1712–7.

    Article  PubMed  Google Scholar 

  2. Stapleton F, Alves M, Bunya VY, Jalbert I, Lekhanont K, Malet F, et al. TFOS DEWS II epidemiology report. Ocul Surf. 2017;15(3):334–65.

    Article  PubMed  Google Scholar 

  3. Seen S, Tong L. Dry eye disease and oxidative stress. Acta Ophthalmol. 2018;96(4):e412–20.

    Article  CAS  PubMed  Google Scholar 

  4. Macri A, Scanarotti C, Bassi AM, Giuffrida S, Sangalli G, Traverso CE, et al. Evaluation of oxidative stress levels in the conjunctival epitheium of patients with or without dry eye, and dry eye patients treated with preservative-free hyaluronic acid 0.15% and vitamin B12 eye drops. Graefes Arch Clin Exp Ophthalmol. 2015;253:425–30.

    Article  CAS  PubMed  Google Scholar 

  5. Ozen S, Ozer MA, Akdemir MO. Vitamin B12 deficiency evaluation and treatment in severe dry eye disease with neauropathic ocular pain. Graefes Arch Clin Exp Ophthalmol. 2017;255:1173–7.

    Article  CAS  PubMed  Google Scholar 

  6. Pergolizzi J, Ahlbeck K, Aldington D, Alon E, Coluzzi F, Dahan A, et al. The development of chronic pain: physiological CHANGE necessitates a multidisciplinary approach to treatment. Curr Med Res Opin. 2013;29:1127–35.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Belmonte C, Acosta MC, Merayo-Lloves J, Gallar J. What causes eye pain? Curr Ophthalmol Rep. 2015;3:111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Akdal G, Yener GG, Ada E, Halmagyi GM. Eye movement disorders in vitamin B12 deficiency: two new cases and a review of the literature. Eur J Neurol. 2007;14(10):1170–2.

    Article  CAS  PubMed  Google Scholar 

  9. Jurkunas UV, Jakobiec FA, Shin J, Zakka FR, Michaud N, Jethva R. Reversible corneal epitheliopathy caused by vitamin B12 and folate deficiency in a vegan with a genetic mutation: a new disease. Eye (Lond). 2011;25(11):1512–4.

    Article  CAS  Google Scholar 

  10. Wakamatsu TH, Dogru M, Matsumoto Y, Kojima T, Kaido M, Ibrahim OM, et al. Evaluation of lipid oxidative stress status in Sjogren syndrome patients. Invest Ophthalmol Vis Sci. 2013;54:201–10.

    Article  CAS  PubMed  Google Scholar 

  11. Pagano G, Castello G, Pallardo FV. Sjogren’s syndrome associated oxidative stress and mitochondrial dysfunction: prospects for chemoprevention trials. Free Radic Res. 2013;47:71–3.

    Article  PubMed  Google Scholar 

  12. Al-Maskari MY, Waly MI, Ali A, Al-Shuaibi YS, Ouhtit A. Folate and vitamin B12 deficiency and hyperhomocysteinemia promote oxidative stress in adult type 2 diabetes. Nutrition. 2012;28:e23–6.

    Article  CAS  PubMed  Google Scholar 

  13. Romano MR, Biagioni F, Carrizzo A, Lorusso M, Spadaro A, Micelli Ferrari T, et al. Effects of vitamin B12 on the corneal nerve regeneration in rats. Exp Eye Res. 2014;120:109–17.

    Article  CAS  PubMed  Google Scholar 

  14. Shetty R, Deshpande K, Ghosh A, Sethu S. Management of ocular neuropathic pain with vitamin B12 supplements: a case report. Cornea. 2015;34:1324–5.

    Article  PubMed  Google Scholar 

  15. Christen WG, Glynn RJ, Chew EY, Albert CM, Manson JE. Folic acid, pyridoxine, and cyanocobalamin combination treatment and age-related macular degeneration in women: the women’s antioxidant and folic acid cardiovascular study. Arch Intern Med. 2009;169:335–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang J, Liu Y, Xu Y, Li X, Fu J, Jiang X, et al. A new approach of ocular nebulization with vitamin B12 versus oxytocin for the treatment of dry eye disease: an in vivo confocal microscopy study. Drug Des Devel Ther. 2019;13:2381–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Behrens A, Doyle JJ, Stern L, Chuck RS, McDonnell PJ, Azar DT, et al. Dysfunctional Tear Syndrome Study Group. Dysfunctional tear syndrome: a Delphi approach to treatment recommendations. Cornea. 2006;25:900–7.

    Article  PubMed  Google Scholar 

  18. Kouchak M, Mahmoodzadeh M, Farrahi F. Designing of a pH-triggered carbopol®/HPMC in situ gel for ocular delivery of dorzolamide HCl: in vitro, in vivo, and ex vivo evaluation. AAPS PharmSciTech. 2019;20:210.

    Article  PubMed  CAS  Google Scholar 

  19. Agrawal AK, Das M, Jain S. In situ gel systems as ‘smart’ carriers for sustained ocular delivery. Expert Opin Drug Deliv. 2012;9:383–402.

    Article  CAS  PubMed  Google Scholar 

  20. Noreen S, Ghumman SA, Batool F, Ijaz B, Basharat M, Noureen S, et al. Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Int J Biol Macromol. 2019:S0141-8130(19)37878-X

  21. Shi H, Wang Y, Bao Z, Lin D, Liu H, Yu A, et al. Thermosensitive glycol chitosan-based hydrogel as a topical ocular drug delivery system for enhanced ocular bioavailability. Int J Pharm. 2019;570:118688.

    Article  CAS  PubMed  Google Scholar 

  22. Cruz-Cazarim ELC, Cazarim MS, Ogunjimi AT, Petrilli R, Rocha EM, Lopez RFV. Prospective insulin-based ophthalmic delivery systems for the treatment of dry eye syndrome and corneal injuries. Eur J Pharm Biopharm. 2019;140:1–10.

    Article  CAS  PubMed  Google Scholar 

  23. Pal Kaur I, Kanwar M. Ocular preparations: the formulation approach. Drug Dev Ind Pharm. 2002;28:473–93.

    Article  Google Scholar 

  24. Obiedallah MM, Abdel-Mageed AM, Elfaham TH. Ocular administration of acetazolamide microsponges in situ gel formulations. Saudi Pharm J. 2018;26(7):909–20.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Makwana SB, Patel VA, Parmar SJ. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci. 2016;6:1–6.

    Article  CAS  PubMed  Google Scholar 

  26. Al-Kassas RS, El-Khatib MM. Ophthalmic controlled release in situ gelling systems for ciprofloxacin based on polymeric carriers. Drug Deliv. 2009;16(3):145–52.

    Article  CAS  PubMed  Google Scholar 

  27. Agrwal V, Mishra B. Design, development and biopharmaceutical properties of buccoadhesive compacts of pentazocine. Drug Dev Ind Pharm. 1990;25:701–9.

    Article  Google Scholar 

  28. Sood A, Panchagnula R. Drug release evaluation of diltiazem CR preparations. Int J Pharm. 1998;175:95–107.

    Article  CAS  Google Scholar 

  29. Carbinatto FM, de Castro AD, Evangelista RC, Cury BS. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian J Pharm Sci. 2014;9:27–34.

    Article  Google Scholar 

  30. Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  CAS  PubMed  Google Scholar 

  31. Baker RW, Lonsdale H. Controlled release: mechanisms and rates, controlled release of biologically active agents. New York: Plenum Press; 1974. p. 15–71.

    Book  Google Scholar 

  32. Chawla V, Tiwary AK, Gupta S. Characterization of polyvinylalcohol microspheres of diclofenac sodium: application of statistical design. Drug Dev Ind Pharm. 2000;26:675–80.

    Article  CAS  PubMed  Google Scholar 

  33. Mohamad SA, Abdelkader H, Elrehany M, Mansour HF. Vitamin B12 buccoadhesive tablets: auspicious non-invasive substitute for intramuscular injection: formulation, in vitro and in vivo appraisal. Drug Dev Ind Pharm. 2019;45:244–51.

    Article  CAS  PubMed  Google Scholar 

  34. Lin Z, Liu X, Zhou T, Wang Y, Bai L, He H, et al. A mouse dry eye model induced by topical administration of benzalkonium chloride. Mol Vis. 2011;17:257–64.

    PubMed  PubMed Central  Google Scholar 

  35. Saedon H, Nosek J, Phillips J, Narendran N, Yang YC. Ocular surface effects of repeated application of povidone iodine in patients receiving frequent intravitreal injections. Cutan Ocul Toxicol. 2017;36(4):343–6.

    Article  CAS  PubMed  Google Scholar 

  36. Li N, Deng XG, He MF. Comparison of the Schirmer I test with and without topical anesthesia for diagnosing dry eye. Int J Ophthalmol. 2012;5:478e81.

    Google Scholar 

  37. Tsubota K, Kaido M, Yagi Y, Fujihara T, Shimmura S. Diseases associated with ocular surface abnormalities: the importance of reflex tearing. Br J Ophthalmol. 1999;83:89–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lemp MA, Holly FJ, Iwata S, Dohlman CH. The precorneal tear film. I. Factors in spreading and maintaining a continuous tear film over the corneal surface. Arch Ophthalmol. 1970;83:89–94.

    Article  CAS  PubMed  Google Scholar 

  39. Norn M. Desiccation of the precorneal tear film I. Corneal wetting time. Acta Ophthalmol. 1969;47:865–80.

    Article  CAS  Google Scholar 

  40. Mohamad SA, Sarhan HA, Abdelkader H, Mansour HF. Vitamin B12–loaded buccoadhesive films as a noninvasive supplement in vitamin b12 deficiency: in vitro evaluation and in vivo comparative study with intramuscular injection. J Pharm Sci. 2017;106:1849–58.

    Article  CAS  PubMed  Google Scholar 

  41. Fathalla ZMA, Vangala A, Longman M, Khaled KA, Hussein AK, El-Garhy OH, et al. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: design, characterisation, toxicity and transcorneal permeation studies. Eur J Pharm Biopharm. 2017;114:119–34.

    Article  CAS  Google Scholar 

  42. Ali UF, Mansour HF. Novel pharmaceutical gels containing glyccerihizic acid ammonium salt for chronic wounds. BJPR. 2014;4:654–68.

    Article  Google Scholar 

  43. Zhang J, Wang Q, Wang A. In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomater. 2010;6:445–54.

    Article  CAS  PubMed  Google Scholar 

  44. Karolewicz B, Gajda M, Owczarek A, Pluta J, Górniak A. Physicochemical characterization and dissolution studies of solid dispersions of clotrimazole with pluronic F127. Trop J Pharm Res. 2014;13:1225–32.

    Article  CAS  Google Scholar 

  45. Furuike T, Komoto D, Hashimoto H, Tamura H. Preparation of chitosan hydrogel and its solubility in organic acids. Int J Biol Macromol. 2017;104:1620–5.

    Article  CAS  PubMed  Google Scholar 

  46. Venkatesh M, Purohit K, Kumar P. Development and evaluation of chitosan based thermosensitive in situ gels of pilocarpine. Int J Pharm Sci. 2013;1(5):164–9.

    Google Scholar 

  47. Tiffany JM. The viscosity of human tears. Int Ophthalmol. 1991 Nov;15(6):371–6. https://doi.org/10.1007/BF00137947.

    Article  CAS  PubMed  Google Scholar 

  48. Oechsner M, Keipert S. Polyacrylic acid/polyvinylpyrrolidone bipolymeric systems. I. Rheological and mucoadhesive properties of formulations potentially useful for the treatment of dry-eye-syndrome. Eur J Pharm Biopharm. 1999;47:113–8.

    Article  CAS  PubMed  Google Scholar 

  49. Gupta H, Jain S, Mathur R, Mishra P, Mishra AK, Velpandian T. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system. Drug Deliv. 2007;14:507–15.

    Article  CAS  PubMed  Google Scholar 

  50. Wu C, Qi H, Chen W, Huang C, Su C, Li W, et al. Preparation and evaluation of a carbopol/HPMC-based in situ gelling ophthalmic system for puerarin. Yakugaku Zasshi. 2007;127:183–91.

    Article  CAS  PubMed  Google Scholar 

  51. Mohanambal E, Arun K, Abdul Hasan Sathali A. Formulation and evaluation of pH-triggered in situ gelling system of levofloxacin. Ind J Pharm Educ Res. 2011;45:58–64.

    Google Scholar 

  52. Abdelkader H, Mansour HF. Comparative studies for ciprofloxacin hydrochloride pre-formed gels and thermally triggered (in situ) gels: in vitro and in vivo appraisal using a bacterial keratitis model in rabbits. Pharm Dev Technol. 2015;20:410–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Soad A. Mohamad planned and performed experimental work. Heba F. Mansour planned and supervised the project and contributed to writing the manuscript. Eman Alaaeldin contributed to the experimental work. Raafat M A Abdallah planned and supervise the in vivo animal study. All the authors contributed to editing the manuscript.

Corresponding author

Correspondence to Heba F. Mansour.

Ethics declarations

Conflict of Interest

The authors declare that they have conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: During the production process, the cited reference numbers throughout the manuscript were inadvertently shifted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamad, S.A., Alaaeldin, E., Abdallah, R.M.A. et al. A New Approach for Dry Eye Management By Mucoadhesive In situ Gel of Vitamin B12: Formulation, In vitro and In vivo Assessment. AAPS PharmSciTech 22, 87 (2021). https://doi.org/10.1208/s12249-021-01957-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01957-4

KEY WORDS

Navigation