Skip to main content

Advertisement

Log in

Keratin Formed Bioadhesive Ophthalmic Gel for the Bacterial Conjunctivitis Treatment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Keratin has the potential to function as the gel matrix in an ophthalmic formulation for the encapsulation of the macrolide antibiotic azithromycin. The quality of this formulation was thoroughly evaluated through various analyses, such as in vitro release assessment, rheological examination, intraocular retention studies in rabbits, assessment of bacteriostatic efficacy, and safety evaluations. It is worth mentioning that the gel demonstrated shear thinning properties and exhibited characteristics of an elastic solid, thereby confirming its structural stability. The gel demonstrated a notable affinity for mucosal surfaces in comparison to traditional azithromycin aqueous solutions. In vitro release testing revealed that drug release transpired via diffusion mechanisms, following a first-order kinetic release pattern. Additionally, the formulated gel exhibited remarkable antibacterial efficacy against Staphylococcus aureus and Pseudomonas aeruginosa in bacteriostatic evaluations. Lastly, safety assessments confirmed that the gel eye drops induced minimal irritation and displayed no apparent cytotoxicity, indicating their good safety and biocompatibility for ocular application. Thus, these findings indicated that the prepared azithromycin gel eye drops complied with the requisite standards for ophthalmic preparations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu YC, Lin MT, Ng AHC, Wong TT, Mehta JS. Nanotechnology for the treatment of allergic conjunctival diseases. Pharmaceuticals (Basel). 2020;13(11). https://doi.org/10.3390/ph13110351.

  2. Liu YC, Ng AHC, Ng XW, Yan P, Venkatraman SS, Mehta JS, et al. Evaluation of a sustained-release prednisolone acetate biodegradable subconjunctival implant in a non-human primate model. Translation Vision Sci Technol. 2017;6(5):9. https://doi.org/10.1167/tvst.6.5.9.

    Article  Google Scholar 

  3. Wu KY, Ashkar S, Jain S, Marchand M, Tran SD. Breaking barriers in eye treatment: polymeric nano-based drug-delivery system for anterior segment diseases and glaucoma. Polymers. 2023;15(6). https://doi.org/10.3390/polym15061373.

  4. Tang X, Liu J, Yan R, Peng Q. Carbohydrate polymer-based bioadhesive formulations and their potentials for the treatment of ocular diseases: a review. Int J Biol Macromol. 2023;242(Pt 3):124902. https://doi.org/10.1016/j.ijbiomac.2023.124902.

    Article  CAS  PubMed  Google Scholar 

  5. Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, et al. Drug delivery to the anterior segment of the eye: a review of current and future treatment strategies. Int J Pharm. 2021;607:120924. https://doi.org/10.1016/j.ijpharm.2021.120924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han Y, Jiang L, Shi H, Xu C, Liu M, Li Q, et al. Effectiveness of an ocular adhesive polyhedral oligomeric silsesquioxane hybrid thermo-responsive FK506 hydrogel in a murine model of dry eye. Bioact Mater. 2022;9:77–91. https://doi.org/10.1016/j.bioactmat.2021.07.027.

    Article  CAS  PubMed  Google Scholar 

  7. Wen Y, Song Z, Xu H, Feng S, Zhu L, Teng F, et al. Azithromycin-loaded linolenic acid-modified methoxy poly(ethylene glycol) micelles for bacterial infection treatment. Drug Deliv Transl Res. 2022;12(3):550–61. https://doi.org/10.1007/s13346-021-00953-2.

    Article  CAS  PubMed  Google Scholar 

  8. Wei W, Li S, Xu H, Zhou F, Wen Y, Song Z, et al. MPEG-PCL copolymeric micelles for encapsulation of azithromycin. AAPS PharmSciTech. 2018;19(5):2041–7. https://doi.org/10.1208/s12249-018-1009-0.

    Article  CAS  PubMed  Google Scholar 

  9. Khalil IA, Ali IH, El-Sherbiny IM. Noninvasive biodegradable nanoparticles-in-nanofibers single-dose ocular insert: in vitro, ex vivo and in vivo evaluation. Nanomedicine (Lond). 2019;14(1):33–55. https://doi.org/10.2217/nnm-2018-0297.

    Article  CAS  PubMed  Google Scholar 

  10. Eid HM, Naguib IA, Alsantali RI, Alsalahat I, Hegazy AM. Novel Chitosan-coated niosomal formulation for improved management of bacterial conjunctivitis: a highly permeable and efficient ocular nanocarrier for azithromycin. J Pharm Sci. 2021;110(8):3027–36. https://doi.org/10.1016/j.xphs.2021.04.020.

    Article  CAS  PubMed  Google Scholar 

  11. Mahaling B, Baruah N, Ahamad N, Maisha N, Lavik E, Katti DS. A non-invasive nanoparticle-based sustained dual-drug delivery system as an eyedrop for endophthalmitis. Int J Pharm. 2021;606:120900. https://doi.org/10.1016/j.ijpharm.2021.120900.

    Article  CAS  PubMed  Google Scholar 

  12. Wu F, Zhao X, Guo S, Ni S, Dai Y, Han Y, et al. A bioequivalence study with pharmacokinetic endpoints for azithromycin eye drops. Clin Pharmacol Drug Dev. 2023;12(7):761–6. https://doi.org/10.1002/cpdd.1226.

    Article  CAS  PubMed  Google Scholar 

  13. Bella AL, Einterz E, Huguet P, Bensaid P, Amza A, Renault D. Effectiveness and safety of azithromycin 1.5% eye drops for mass treatment of active trachoma in a highly endemic district in Cameroon. BMJ Open Ophthalmol. 2020;5(1):e000531. https://doi.org/10.1136/bmjophth-2020-000531.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wu R, Huang Q, Zhou Z, Chen Y, Hu H, Wang F, et al. Nanoparticulate ophthalmic drug delivery of norfloxacin to prevent ocular infection after cataract surgery: evaluation in animal model. Mater Exp. 2021;11(8):1402–11. https://doi.org/10.1166/mex.2021.2040.

    Article  CAS  Google Scholar 

  15. Hegde RR, Verma A, Ghosh A. Microemulsion: new insights into the ocular drug delivery. ISRN Pharm. 2013;2013:826798. https://doi.org/10.1155/2013/826798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marcano DC, Shin CS, Lee B, Isenhart LC, Liu X, Li F, et al. Synergistic cysteamine delivery nanowafer as an efficacious treatment modality for corneal cystinosis. Mol Pharm. 2016;13(10):3468–77. https://doi.org/10.1021/acs.molpharmaceut.6b00488.

    Article  CAS  PubMed  Google Scholar 

  17. Mfoafo K, Omidi Y, Omidian H. Thermoresponsive mucoadhesive hybrid gels in advanced drug delivery systems. Int J Pharm. 2023;636:122799. https://doi.org/10.1016/j.ijpharm.2023.122799.

    Article  CAS  PubMed  Google Scholar 

  18. White JM, Garza A, Griebler JJ, Bates FS, Calabrese MA. Engineering the structure and rheological properties of P407 hydrogels via reverse poloxamer addition. Langmuir. 2023;39(14):5084–94. https://doi.org/10.1021/acs.langmuir.3c00088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lai WF, Reddy OS, Zhang D, Wu H, Wong WT. Cross-linked chitosan/lysozyme hydrogels with inherent antibacterial activity and tuneable drug release properties for cutaneous drug administration. Sci Technol Adv Mater. 2023;24(1):2167466. https://doi.org/10.1080/14686996.2023.2167466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurniawansyah IS, Gozali D, Sopyan I, Iqbal M, Subarnas A. Physical study of chloramphenicol in situ gel with base hydroxypropyl methylcellulose and poloxamer 188. J Pharm Bioallied Sci. 2019;11(Suppl 4):S547-s50. https://doi.org/10.4103/jpbs.JPBS_201_19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pace LA, Plate JF, Mannava S, Barnwell JC, Koman LA, Li Z, et al. A human hair keratin hydrogel scaffold enhances median nerve regeneration in nonhuman primates: an electrophysiological and histological study. Tissue Eng Part A. 2014;20(3–4):507–17. https://doi.org/10.1089/ten.TEA.2013.0084.

    Article  CAS  PubMed  Google Scholar 

  22. Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019;30(10):115. https://doi.org/10.1007/s10856-019-6318-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Costa AF, Luís S, Noro J, Silva S, Silva C, Ribeiro A. Therapeutic textiles functionalized with keratin-based particles encapsulating terbinafine for the treatment of onychomycosis. Int J Mol Sci. 2022;23(22). https://doi.org/10.3390/ijms232213999.

  24. Yu B, Kong D, Cheng C, Xiang D, Cao L, Liu Y, et al. Assembly and recognition of keratins: a structural perspective. Semin Cell Dev Biol. 2022;128:80–9. https://doi.org/10.1016/j.semcdb.2021.09.018.

    Article  CAS  PubMed  Google Scholar 

  25. Senthilkumar N, Chowdhury S, Sanpui P. Extraction of keratin from keratinous wastes: current status and future directions. J Mater Cycle Waste Manage. 2022;25(1):1–16. https://doi.org/10.1007/s10163-022-01492-9.

    Article  CAS  Google Scholar 

  26. Nuutinen EM, Valle-Delgado JJ, Kellock M, Farooq M, Osterberg M. Affinity of keratin peptides for cellulose and lignin: a fundamental study toward advanced bio-based materials. Langmuir. 2022;38(32):9917–27. https://doi.org/10.1021/acs.langmuir.2c01140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mattiello S, Guzzini A, Del Giudice A, Santulli C, Antonini M, Lupidi G, et al. Physico-chemical characterization of keratin from wool and chicken feathers extracted using refined chemical methods. Polymers. 2022;15(1). https://doi.org/10.3390/polym15010181.

  28. Tang A, Li Y, Yao Y, Yang X, Cao Z, Nie H, et al. Injectable keratin hydrogels as hemostatic and wound dressing materials. Biomater Sci. 2021;9(11):4169–77. https://doi.org/10.1039/d1bm00135c.

    Article  CAS  PubMed  Google Scholar 

  29. Chen M, Ren X, Dong L, Li X, Cheng H. Preparation of dynamic covalently crosslinking keratin hydrogels based on thiol/disulfide bonds exchange strategy. Int J Biol Macromol. 2021;182:1259–67. https://doi.org/10.1016/j.ijbiomac.2021.05.057.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Xu Y, Zhang Z, He Y, Hou Z, Zhao Z, et al. Rational design of high-performance keratin-based hemostatic agents. Adv Healthc Mater. 2022;11(15):e2200290. https://doi.org/10.1002/adhm.202200290.

    Article  CAS  PubMed  Google Scholar 

  31. Feng CC, Lu WF, Liu YC, Liu TH, Chen YC, Chien HW, et al. A hemostatic keratin/alginate hydrogel scaffold with methylene blue mediated antimicrobial photodynamic therapy. J Mater Chem B. 2022;10(25):4878–88. https://doi.org/10.1039/d2tb00898j.

    Article  CAS  PubMed  Google Scholar 

  32. Demir GC, Erdemli O, Keskin D, Tezcaner A. Xanthan-gelatin and xanthan-gelatin-keratin wound dressings for local delivery of Vitamin C. Int J Pharm. 2022;614:121436. https://doi.org/10.1016/j.ijpharm.2021.121436.

    Article  CAS  PubMed  Google Scholar 

  33. Lu W-F, Lu T-Y, Liu Y-C, Liu T-H, Feng C-C, Lin C-W, et al. Keratin-associated protein nanoparticles as hemostatic agents. ACS Appl Nano Mater. 2021;4(11):12798–806. https://doi.org/10.1021/acsanm.1c03558.

    Article  CAS  Google Scholar 

  34. Singaravelu S, Ramanathan G, Raja MD, Nagiah N, Padmapriya P, Kaveri K, et al. Biomimetic interconnected porous keratin-fibrin-gelatin 3D sponge for tissue engineering application. Int J Biol Macromol. 2016;86:810–9. https://doi.org/10.1016/j.ijbiomac.2016.02.021.

    Article  CAS  PubMed  Google Scholar 

  35. Navarro J, Swayambunathan J, Lerman M, Santoro M, Fisher JP. Development of keratin-based membranes for potential use in skin repair. Acta Biomater. 2019;83:177–88. https://doi.org/10.1016/j.actbio.2018.10.025.

    Article  CAS  PubMed  Google Scholar 

  36. Min SJ, Lee JS, Nah H, Moon H-J, Lee SJ, Kang HJ, et al. Degradable and tunable keratin-fibrinogen hydrogel as controlled release system for skin tissue regeneration. J Bionic Eng. 2023;20(3):1049–59. https://doi.org/10.1007/s42235-022-00317-7.

    Article  Google Scholar 

  37. Sharma S, Rostamabadi H, Gupta S, Kumar Nadda A, Kharazmi MS, Jafari SM. Nano/micro-formulations of keratin in biocomposites, wound healing and drug delivery systems; recent advances in biomedical applications. Eur Polymer J. 2022;180. https://doi.org/10.1016/j.eurpolymj.2022.111614.

  38. Zhang H, Su F, Ma X, Zhao G. Brief introduction of keratin and its biological application, especially in drug delivery. Emergent Mater. 2021;4(5):1225–42. https://doi.org/10.1007/s42247-021-00216-3.

    Article  CAS  Google Scholar 

  39. Du J, Wang L, Han X, Dou J, Jiang X, Yuan J. Polydopamine/keratin complexes as gatekeepers of mesoporous silica nanoparticles for pH and GSH dual responsive drug delivery. Materials Letters. 2021;293. https://doi.org/10.1016/j.matlet.2021.129676.

  40. Srinivasan B, Kumar R, Shanmugam K, Sivagnam UT, Reddy NP, Sehgal PK. Porous keratin scaffold-promising biomaterial for tissue engineering and drug delivery. J Biomed Mater Res B Appl Biomater. 2010;92(1):5–12. https://doi.org/10.1002/jbm.b.31483.

    Article  CAS  PubMed  Google Scholar 

  41. Yang J, Yu H, Wang L, Liu J, Liu X, Hong Y, et al. Advances in adhesive hydrogels for tissue engineering. European Polymer Journal. 2022;172. https://doi.org/10.1016/j.eurpolymj.2022.111241.

  42. Sarma A. Biological importance and pharmaceutical significance of keratin: a review. Int J Biol Macromol. 2022;219:395–413. https://doi.org/10.1016/j.ijbiomac.2022.08.002.

    Article  CAS  PubMed  Google Scholar 

  43. de Guzman RC, Saul JM, Ellenburg MD, Merrill MR, Coan HB, Smith TL, et al. Bone regeneration with BMP-2 delivered from keratose scaffolds. Biomaterials. 2013;34(6):1644–56. https://doi.org/10.1016/j.biomaterials.2012.11.002.

    Article  CAS  PubMed  Google Scholar 

  44. Yuan J, Geng J, Xing Z, Shim KJ, Han I, Kim JC, et al. Novel wound dressing based on nanofibrous PHBV-keratin mats. J Tissue Eng Regen Med. 2015;9(9):1027–35. https://doi.org/10.1002/term.1653.

    Article  CAS  PubMed  Google Scholar 

  45. Zhai M, Xu Y, Zhou B, Jing W. Keratin-chitosan/n-ZnO nanocomposite hydrogel for antimicrobial treatment of burn wound healing: characterization and biomedical application. J Photochem Photobiol B. 2018;180:253–8. https://doi.org/10.1016/j.jphotobiol.2018.02.018.

    Article  CAS  PubMed  Google Scholar 

  46. Sadeghi S, Nourmohammadi J, Ghaee A, Soleimani N. Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing. Int J Biol Macromol. 2020;147:1239–47. https://doi.org/10.1016/j.ijbiomac.2019.09.251.

    Article  CAS  PubMed  Google Scholar 

  47. Cruz-Maya I, Guarino V, Almaguer-Flores A, Alvarez-Perez MA, Varesano A, Vineis C. Highly polydisperse keratin rich nanofibers: scaffold design and in vitro characterization. J Biomed Mater Res A. 2019;107(8):1803–13. https://doi.org/10.1002/jbm.a.36699.

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Lin J, Zhi X, Li P, Jiang X, Yuan J. Triple stimuli-responsive keratin nanoparticles as carriers for drug and potential nitric oxide release. Mater Sci Eng C Mater Biol Appl. 2018;91:606–14. https://doi.org/10.1016/j.msec.2018.05.073.

    Article  CAS  PubMed  Google Scholar 

  49. Wan X, Liu P, Jin X, Xin X, Li P, Yuan J, et al. Electrospun PCL/keratin/AuNPs mats with the catalytic generation of nitric oxide for potential of vascular tissue engineering. J Biomed Mater Res A. 2018;106(12):3239–47. https://doi.org/10.1002/jbm.a.36521.

    Article  CAS  PubMed  Google Scholar 

  50. Hosny KM, Rizg WY, Alkhalidi HM, Abualsunun WA, Bakhaidar RB, Almehmady AM, et al. Nanocubosomal based in situ gel loaded with natamycin for ocular fungal diseases: development, optimization, in-vitro, and in-vivo assessment. Drug Deliv. 2021;28(1):1836–48. https://doi.org/10.1080/10717544.2021.1965675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University for providing the instruments and equipment related to the paper.

Funding

This work was supported by the Taizhou Science and Technology Supporting Agriculture Project (TN202006) and the Medical Science Research of Hebei Province (20230403).

Author information

Authors and Affiliations

Authors

Contributions

M.S.: formal analysis, date curation, writing-original draft. J.N.: formal analysis, methodology, investigation. Y.Z.: formal analysis, methodology, date curation, validation. M.W. and Y.S.: characterization, software. Y.M., X.C., and Q.L.: conceptualization, methodology, resources, supervision, formal analysis, writing review and editing.

Corresponding authors

Correspondence to Yujuan Mao or Qian Li.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 88.1 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Niu, J., Zhang, Y. et al. Keratin Formed Bioadhesive Ophthalmic Gel for the Bacterial Conjunctivitis Treatment. AAPS PharmSciTech 25, 77 (2024). https://doi.org/10.1208/s12249-024-02772-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02772-3

Keywords

Navigation