Michael E. Aulton pharmaceutics: the design and manufacture of medicines. 2007.
Google Scholar
Pina MFF, Zhao M, Pinto JFJF, Sousa JJJ, Craig DQM. The influence of drug physical state on dissolution enhancement of solid dispersions prepared via hot-melt extrusion: a case study using olanzapine. J Pharm Sci. 2014;103(4):1214–23. https://doi.org/10.1002/jps.23894.
CAS
Article
Google Scholar
Larry L, Augsburger SWH. Pharmaceutical dosage forms—tablets: manufacture and process. Control. 2008.
Dahan A, Miller JM, Amidon GL. Prediction of solubility and permeability class membership: provisional BCS classification of world’s top oral drugs. AAPS J. 2009;11(4):740–6. https://doi.org/10.1208/s12248-009-9144-x.
CAS
Article
Google Scholar
Jones D. Pharmaceutical applications of polymers for drug delivery; 2004.
Gubbins PO, Bertch KE. Drug absorption in gastrointestinal disease and surgery. Pharmacother J Hum Pharmacol Drug Ther. 1989;9(5):285–95. https://doi.org/10.1002/j.1875-9114.1989.tb04140.x.
CAS
Article
Google Scholar
Boateng J. Drug delivery innovations to address global health challenges for pediatric and geriatric populations (through improvements in patient compliance). J Pharm Sci. 2017;106(11):3188–98. https://doi.org/10.1016/j.xphs.2017.07.009.
CAS
Article
Google Scholar
Li S-C. Factors affecting therapeutic compliance: a review from patient’s perspective. Ther Clin Risk Manag. 2008;4:269–86. https://doi.org/10.2147/TCRM.S1458.
Article
Google Scholar
Nguyen S, Hiorth M. Advanced drug delivery systems for local treatment of oral cavity. Ther Deliv. 2015;6(5):595–608. https://doi.org/10.4155/tde.15.5.
CAS
Article
Google Scholar
Dodou K. Research and developments in buccal and sublingual drug delivery systems. Pharm J. 2012:288(446).
Kraan H, Vrieling H, Czerkinsky C, Jiskoot W, Kersten G, Amorij J. Buccal and sublingual vaccine delivery. J Control Release. 2014;190:580–92. https://doi.org/10.1016/j.jconrel.2014.05.060.
CAS
Article
Google Scholar
Okamoto H, Nakamori T, Arakawa Y, Iida K, Danjo K. Development of polymer film dosage forms of lidocaine for buccal administration: II. Comparison of preparation methods. J Pharm Sci. 2002;91(11):2424–32. https://doi.org/10.1002/jps.10228.
CAS
Article
Google Scholar
Sattar M, Sayed OM, Lane ME. Oral transmucosal drug delivery—current status and future prospects. Int J Pharm. 2014;471(1–2):498–506. https://doi.org/10.1016/j.ijpharm.2014.05.043.
CAS
Article
Google Scholar
Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011;77(2):187–99. https://doi.org/10.1016/j.ejpb.2010.11.023.
CAS
Article
Google Scholar
Lam JKW, Xu Y, Worsley A, Wong ICK. Oral transmucosal drug delivery for pediatric use. Adv Drug Deliv Rev. 2014;73:50–62. https://doi.org/10.1016/j.addr.2013.08.011.
CAS
Article
Google Scholar
Modica de Mohac L, de Fátima PM, Raimi-Abraham BT. Solid microcrystalline dispersion films as a new strategy to improve dissolution rate of poorly water soluble drugs: a case study using olanzapine. Int J Pharm. 2016;508(1–2):42–50. https://doi.org/10.1016/j.ijpharm.2016.05.012.
CAS
Article
Google Scholar
Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75. https://doi.org/10.1016/j.drudis.2007.09.005.
CAS
Article
Google Scholar
Marano S, Barker SA, Raimi-Abraham BT, Missaghi S, Rajabi-Siahboomi A, Craig DQM. Development of micro-fibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled centrifugal spinning. Eur J Pharm Biopharm. 2016;103:84–94. https://doi.org/10.1016/j.ejpb.2016.03.021.
CAS
Article
Google Scholar
Modica De Mohac L, Caruana R, Pavia FC, Cavallaro G, Giammona G, Licciardi M. Multicomponent solid dispersion as a formulation strategy to improve drug permeation: a case study on anti-colorectal cancer irinotecan. J Drug Deliv Sci Technol. 2019;52:346–54. https://doi.org/10.1016/j.jddst.2019.04.040.
Article
Google Scholar
Modica de Mohac L, Keating A, de Fátima Pina M, Raimi-Abraham B. Engineering of nanofibrous amorphous and crystalline solid dispersions for oral drug delivery. Pharmaceutics. 2018;11(1):7. https://doi.org/10.3390/pharmaceutics11010007.
CAS
Article
Google Scholar
Modica de Mohac LM, Raimi-Abraham B, Caruana R, Gaetano G, Licciardi M. Multicomponent solid dispersion a new generation of solid dispersion produced by spray-drying. J Drug Deliv Sci Technol. 2020;57(March):101750. https://doi.org/10.1016/j.jddst.2020.101750.
Article
Google Scholar
Baghel S, Cathcart H, O'Reilly NJ, O'Reilly NJ. Investigation into solid-state properties and dissolution profile of spray-dried ternary amorphous solid dispersions: a rational step toward design and development of a multicomponent amorphous system. Mol Pharm. 2018;15(9):3796–812. https://doi.org/10.1021/acs.molpharmaceut.8b00306.
CAS
Article
Google Scholar
Démuth B, Farkas A, Balogh A, Bartosiewicz K, Kállai-Szabó B, Bertels J, et al. Lubricant-induced crystallization of itraconazole from tablets made of electrospun amorphous solid dispersion. J Pharm Sci. 2016;105(9):2982–8. https://doi.org/10.1016/j.xphs.2016.04.032.
CAS
Article
Google Scholar
Li X, Kanjwal MA, Lin L, Chronakis IS. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf B: Biointerfaces. 2013;103:182–8. https://doi.org/10.1016/j.colsurfb.2012.10.016.
CAS
Article
Google Scholar
Di Meo C, Cilurzo F, Licciardi M, et al. Polyaspartamide-doxorubicin conjugate as potential prodrug for anticancer therapy. Pharm Res. 2015;32(5):1557–69. https://doi.org/10.1007/s11095-014-1557-2.
CAS
Article
Google Scholar
Paolino D, Licciardi M, Celia C, Giammona G, Fresta M, Cavallaro G. Bisphosphonate–polyaspartamide conjugates as bone targeted drug delivery systems. J Mater Chem B. 2015;3(2):250–9. https://doi.org/10.1039/C4TB00955J.
CAS
Article
Google Scholar
Lo MA, et al. Biocompatibility and biodegradability of electrospun PHEA-PLA scaffolds: our preliminary experience in a murine animal model. Dig J Nanomater Biostructures. 2012;7(2):841–51.
Google Scholar
Giammona G, Craparo EF. Polymer-based systems for controlled release and targeting of drugs. Polymers (Basel). 2019;11(12):2066. https://doi.org/10.3390/polym11122066.
CAS
Article
Google Scholar
Buscemi S, Palumbo VD, Maffongelli A, Fazzotta S, Palumbo FS, Licciardi M, et al. Electrospun PHEA-PLA/PCL scaffold for vascular regeneration: a preliminary in vivo evaluation. Transplant Proc. 2017;49(4):716–21. https://doi.org/10.1016/j.transproceed.2017.02.017.
CAS
Article
Google Scholar
Saiano F, Pitarresi G, Cavallaro G, Licciardi M, Giammona G. Evaluation of mucoadhesive properties of α,β-poly(N-hydroxyethyl)-dl-aspartamide and α,β-poly(aspartylhydrazide) using ATR–FTIR spectroscopy. Polymer (Guildf). 2002;43(23):6281–6. https://doi.org/10.1016/S0032-3861(02)00504-9.
CAS
Article
Google Scholar
Lopes DG, Garsuch V, Becker K, Paudel A, Stehr M, Zimmer A, et al. Improving granule strength of roller-compacted ibuprofen sodium for hot-melt coating processing. Int J Pharm. 2016;510(1):285–95. https://doi.org/10.1016/j.ijpharm.2016.06.049.
CAS
Article
Google Scholar
Licciardi M, Campisi M, Cavallaro G, Cervello M, Azzolina A, Giammona G. Synthesis and characterization of polyaminoacidic polycations for gene delivery. Biomaterials. 2006;27(9):2066–75. https://doi.org/10.1016/j.biomaterials.2005.09.027.
CAS
Article
Google Scholar
Mendichi R, Giacometti Schieroni A, Cavallaro G, Licciardi M, Giammona G. Molecular characterization of α,β-poly(N-2-hydroxyethyl)-dl-aspartamide derivatives as potential self-assembling copolymers forming polymeric micelles. Polymer (Guildf). 2003;44(17):4871–9. https://doi.org/10.1016/S0032-3861(03)00486-5.
CAS
Article
Google Scholar
Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9. https://doi.org/10.1016/j.ejpb.2007.08.001.
CAS
Article
Google Scholar
Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231(2):131–44. https://doi.org/10.1016/S0378-5173(01)00891-2.
CAS
Article
Google Scholar
Mansur HS, Sadahira CM, Souza AN, Mansur AAP. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C. 2008;28(4):539–48. https://doi.org/10.1016/j.msec.2007.10.088.
CAS
Article
Google Scholar
Park HJ, Ramaraj B, Yoon KR. Graft polymerization of p-dioxanone onto polyhydroxyethylaspartamide through ring-opening polymerization using organometallic and enzyme catalysts. Des Monomers Polym. 2013;16(5):407–16. https://doi.org/10.1080/15685551.2012.747158.
CAS
Article
Google Scholar
Grochowicz M, Kierys A. Thermal characterization of polymer-silica composites loaded with ibuprofen sodium salt. J Anal Appl Pyrolysis. 2015;114:91–9. https://doi.org/10.1016/j.jaap.2015.05.004.
CAS
Article
Google Scholar
Gómez I, Otazo EM, Hernández H, Rubio E, Varela J, Ramírez M, et al. Thermal degradation study of PVA derivative with pendant phenylthionecarbamate groups by DSC/TGA and GC/MS. Polym Degrad Stab. 2015;112:132–6. https://doi.org/10.1016/j.polymdegradstab.2014.12.027.
CAS
Article
Google Scholar
Talukder R, Reed C, Dürig T, Hussain M. Dissolution and solid-state characterization of poorly water-soluble drugs in presence of a hydrophilic carrier. AAPS PharmSciTech. 2011;12(4):1227–33. https://doi.org/10.1208/s12249-011-9697-8.
CAS
Article
Google Scholar
Kemala T, Budianto E, Soegiyono B. Preparation and characterization of microspheres based on blend of poly(lactic acid) and poly(ɛ-caprolactone) with poly(vinyl alcohol) as emulsifier. Arab J Chem. 2012;5(1):103–8. https://doi.org/10.1016/j.arabjc.2010.08.003.
CAS
Article
Google Scholar
Aina A, Morris A, Gupta M, et al. Dissolution behavior of poly vinyl alcohol in water and its effect on physical morphologies of PLGA scaffolds. UK J Pharm Biosci. 2014;2(1):1. https://doi.org/10.20510/ukjpb/2/i1/91124.
Article
Google Scholar
Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21(23):2475–90. https://doi.org/10.1016/S0142-9612(00)00115-0.
CAS
Article
Google Scholar
Ibrahim H, Bindschaedler C, Doelker E, Buri P, Gurny R. Aqueous nanodispersions prepared by a salting-out process. Int J Pharm. 1992;87(1–3):239–46. https://doi.org/10.1016/0378-5173(92)90248-Z.
CAS
Article
Google Scholar
Clayton KN, Salameh JW, Wereley ST, Kinzer-Ursem TL. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics. 2016;10(5):054107. https://doi.org/10.1063/1.4962992.
CAS
Article
Google Scholar
Blanco-Prı́eto MJ, Fattal E, Gulik A, Dedieu JC, Roques BP, Couvreur P. Characterization and morphological analysis of a cholecystokinin derivative peptide-loaded poly(lactide-co-glycolide) microspheres prepared by a water-in-oil-in-water emulsion solvent evaporation method. J Control Release. 1997;43(1):81–7. https://doi.org/10.1016/S0168-3659(96)01474-5.
Article
Google Scholar
Oki J, Watanabe D, Uekusa T, Sugano K. Mechanism of supersaturation suppression in dissolution process of acidic drug salt. Mol Pharm. 2019;16(4):1669–77. https://doi.org/10.1021/acs.molpharmaceut.9b00006.
CAS
Article
Google Scholar
Kuentz M. Drug supersaturation during formulation digestion, including real-time analytical approaches. Adv Drug Deliv Rev. 2019;142:50–61. https://doi.org/10.1016/j.addr.2018.11.003.
CAS
Article
Google Scholar
Budhian A, Siegel SJ, Winey KI. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm. 2007;336(2):367–75. https://doi.org/10.1016/j.ijpharm.2006.11.061.
CAS
Article
Google Scholar
Ibrahim MM, El-Zawawy WK, Nassar MA. Synthesis and characterization of polyvinyl alcohol/nanospherical cellulose particle films. Carbohydr Polym. 2010;79(3):694–9. https://doi.org/10.1016/j.carbpol.2009.09.030.
CAS
Article
Google Scholar
Newa M, Bhandari KH, Kim J-A, Yoo BK, Choi HG, Yong CS, et al. Preparation and evaluation of fast dissolving ibuprofen-polyethylene glycol 6000 solid dispersions. Drug Deliv. 2008;15(6):355–64. https://doi.org/10.1080/10717540801952431.
CAS
Article
Google Scholar
Chu KR, Lee E, Jeong SH, Park E-S. Effect of particle size on dissolution behaviors of poorly water-soluble drugs. Arch Pharm Res. 2012;35(7):1187–95. https://doi.org/10.1007/s12272-012-0709-3.
CAS
Article
Google Scholar
Lee JW, Thomas LC, Schmidt SJ. Investigation of heating rate dependency associated with loss of crystalline structure in sucrose, glucose, and fructose using a thermal analysis approach (part I). J Agric Food Chem. 2011;59(2):684–701. https://doi.org/10.1021/jf1042344.
CAS
Article
Google Scholar
Baek HH, Kim D-H, Kwon SY, Rho SJ, Kim DW, Choi HG, et al. Development of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose. Arch Pharm Res. 2012;35(4):683–9. https://doi.org/10.1007/s12272-012-0412-4.
CAS
Article
Google Scholar
Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Aqueous solubility of crystalline and amorphous drugs: challenges in measurement. Pharm Dev Technol. 2011;16(3):187–200. https://doi.org/10.3109/10837451003774377.
CAS
Article
Google Scholar
Yoshioka M, Hancock BC, Zografi G. Crystallization of indomethacin from amorphous state below and above its glass transition temperature. J Pharm Sci. 1994;83(12):1700–5. https://doi.org/10.1002/jps.2600831211.
CAS
Article
Google Scholar
Konno H, Taylor LS. Influence of different polymers on crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 2006;95(12):2692–705. https://doi.org/10.1002/jps.20697.
CAS
Article
Google Scholar
Mantas A, Labbe V, Loryan I, Mihranyan A. Amorphisation of free acid ibuprofen and other profens in mixtures with nanocellulose: dry powder formulation strategy for enhanced solubility. Pharmaceutics. 2019;11(2):68. https://doi.org/10.3390/pharmaceutics11020068.
CAS
Article
Google Scholar
Woertz C, Kleinebudde P. Development of orodispersible polymer films with focus on solid state characterization of crystalline loperamide. Eur J Pharm Biopharm. 2015;94:52–63. https://doi.org/10.1016/j.ejpb.2015.04.036.
CAS
Article
Google Scholar
Rodde MS, Divase GT, Devkar TB, Tekade AR. Solubility and bioavailability enhancement of poorly aqueous soluble atorvastatin: in vitro, ex vivo, and in vivo studies. Biomed Res Int. 2014;2014:1–10. https://doi.org/10.1155/2014/463895.
CAS
Article
Google Scholar
El-Badry M, Fetih G, Fathy M. Improvement of solubility and dissolution rate of indomethacin by solid dispersions in Gelucire 50/13 and PEG4000. Saudi Pharm J. 2009;17(3):217–25. https://doi.org/10.1016/j.jsps.2009.08.006.
Article
Google Scholar
Van Den Mooter G. Solid dispersions as a formulation strategy for poorly soluble compounds. Annu Symp Finish Soc Phys Pharm. 2009;1(January):1–37.
Google Scholar
Liu C, Chen Z, Chen Y, Lu J, Li Y, Wang S, et al. Improving oral bioavailability of sorafenib by optimizing “spring” and “parachute” based on molecular interaction mechanisms. Mol Pharm. 2016;13(2):599–608. https://doi.org/10.1021/acs.molpharmaceut.5b00837.
CAS
Article
Google Scholar