Skip to main content

Advertisement

Log in

Exploring Endolysin-Loaded Alginate-Chitosan Nanoparticles as Future Remedy for Staphylococcal Infections

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Endolysins are a novel class of antibacterials with proven efficacy in combating various bacterial infections, in vitro and in vivo. LysMR-5, an endolysin derived from phage MR-5, demonstrated high lytic activity in our laboratory against multidrug-resistant S. aureus (MRSA) and S. epidermidis strains. However, endolysin and proteins in general are associated with instability and short in vivo half-life, consequently limiting their usage as pharmaceutical preparation to treat bacterial infections. Nanoencapsulation of endolysins could help to achieve better therapeutic outcome, by protecting the proteins from degradation, providing sustained release, thus could increase their stability, shelf life, and therapeutic efficacy. Hence, in this study, the feasibility of alginate-chitosan nanoparticles (Alg-Chi NPs) to serve as drug delivery platform for LysMR-5 was evaluated. LysMR-5-loaded nanoparticles were prepared by calcium ion–induced pre-gelation of alginate core and its complexation with chitosan. The formation of nanoparticles was confirmed on the basis of DLS, zeta potential, and electron microscopy imaging. The LysMR-5-loaded nanoparticles presented a hydrodynamic diameter of 276.5 ± 42, a PDI of 0.342 ± 0.02, a zeta potential − 25 mV, and an entrapment efficiency of 62 ± 3.1%. The potential ionic interaction between alginate, chitosan, and LysMR-5 was investigated by FT-IR and SEM-EDX analysis. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), nano-sized particles with characteristic morphology were seen. Different antibacterial assays and SDS-PAGE analysis showed no change in endolysin’s structural integrity and bioactivity after entrapment. A direct antibacterial effect of blank Alg-Chi Nps, showing enhanced bactericidal activity upon LysMR-5 loading, was observed against S. aureus. At physiological pH (7.2), the release profile of LysMR-5 from Alg-Chi NPs showed a biphasic release and followed a non-Fickian release mechanism. The biocompatible nature as revealed by cytocompatibility and hemocompatibility studies endorsed their use as drug delivery system for in vivo studies. Collectively, these results demonstrate the potential of Alg-Chi NPs as nano-delivery vehicle for endolysin LysMR-5 and other therapeutic proteins for their use in various biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339:520–32.

    CAS  PubMed  Google Scholar 

  2. Boswihi SS, Udo EE, Monecke S, Mathew B, Noronha B, Verghese T, et al. Emerging variants of methicillin-resistant Staphylococcus aureus genotypes in Kuwait hospitals. PLoS One. 2018;1:e0195933. 10.1371.

  3. Klevens RM, Edwards JR, Tenover FC, McDonald LC, Horan T, Gaynes R. Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992–2003. Clin Infect Dis. 2006;42:389–91.

    PubMed  Google Scholar 

  4. Nelson D, Loomis L, Fischetti VA. Prevention and elimination of upper respiratory colonization of mice by group a streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci U S A. 2001;98:4107–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fischetti VA. Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol. 2008;11:393–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, et al. Endolysins as antimicrobials. Adv Virus Res. 2012;83:299–365.

    CAS  PubMed  Google Scholar 

  7. Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012;7:1147–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Roach DR, Donovan DM. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage. 2015;5:e1062590. https://doi.org/10.1080/21597081.2015.1062590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaur J, Singh P, Sharma D, Harjai K, Chhibber S. A potent enzybiotic against methicillin-resistant Staphylococcus aureus. Virus Genes. 2020. https://doi.org/10.1007/s11262-020-01762-4.

  10. Loeffler JM, Fischetti VA. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrob Agents Chemother. 2003;47:375–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jun SY, Jang IJ, Yoon S, Jang K, Yu KS, Cho JY, et al. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob Agents Chemother. 2017;61:e02629–16.

    PubMed  PubMed Central  Google Scholar 

  12. Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release. 2003;90:261–80.

    CAS  PubMed  Google Scholar 

  13. Salmaso S, Caliceti P. Self assembling nanocomposites for protein delivery: supramolecular interactions of soluble polymers with protein drugs. Int J Pharm. 2013;440:111–23.

    CAS  PubMed  Google Scholar 

  14. Panta P, Kim DY, Kwon JS, Son AR, Lee KW, Kim MS. Protein drug-loaded polymeric nanoparticles. J Biomed Sci Eng. 2014;7:825–32.

    Google Scholar 

  15. Zohri M, Alavidjeh MS, Haririan I, Ardestani MS, Ebrahimi SE, Sani HT, et al. A comparative study between the antibacterial effect of nisin and nisin-loaded chitosan/alginate nanoparticles on the growth of Staphylococcus aureus in raw and pasteurized milk samples. Probiotics Antimicrob proteins. 2010;2:258–66.

    CAS  PubMed  Google Scholar 

  16. Richardson TP, Murphy WL, Mooney DJ. Polymeric delivery of proteins and plasmid DNA for tissue engineering and gene therapy. Crit Rev Eukaryot Gene Expr. 2001;11:47–58.

    CAS  PubMed  Google Scholar 

  17. Bhunchu S, Rojsitthisak P. Biopolymeric alginate-chitosan nanoparticles as drug delivery carriers for cancer therapy. Pharmazie. 2014;69:563–70.

    CAS  PubMed  Google Scholar 

  18. De S, Robinson D. Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J Control Release. 2003;89:101–12.

    CAS  PubMed  Google Scholar 

  19. Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate chitosan- pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine. 2010;6:153–60.

    CAS  PubMed  Google Scholar 

  20. Hathaway H, Ajuebor J, Stephens L, Coffey A, Potter U, Sutton JM, et al. Thermally triggered release of the bacteriophage endolysin CHAPK and the bacteriocin lysostaphin for the control of methicillin resistant Staphylococcus aureus (MRSA). J Control Release. 2017;245:108–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gondil VS, Dube T, Panda JJ, Yennamalli RM, Harjai K, Chhibber S. Comprehensive evaluation of chitosan nanoparticle based phage lysin delivery system; a novel approach to counter S. pneumoniae infections. Int J Pharm. 2020;573:e118850.

  22. Laemmli. Laemmli-SDSPAGE Bio-protocol Bio101. 1997: e80.

  23. Blanco MD, Guerrero S, Teijo’n C, Olmo R, Pastrana L, Katime I, et al. Preparation and characterization of nanoparticulate poly(N-isopropylacrylamide)hidrogel for the controlled release of anti-tumour drugs. Polym Int. 2008;57:1215–25.

  24. Zhang X, Wu Z, Gao X, Shu S, Zhang H, Wang Z, et al. Chitosan bearing pendant cyclodextrin as a carrier for controlled protein release. Carbohydr Polym. 2009;77:394–401.

    CAS  Google Scholar 

  25. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.

    CAS  Google Scholar 

  26. Gupta NK, Tomar P, Sharma V, Dixit VK. Development and characterization of chitosan coated poly-(ɛ-caprolactone) nanoparticulate system for effective immunization against influenza. Vaccine. 2011;29:9026–37.

    CAS  PubMed  Google Scholar 

  27. Kurosaki T, Kitahara T, Fumoto S, Nishida K, Yamamoto K, Nakagawa H, et al. Chondroitin sulfate capsule system for efficient and secure gene delivery. J Pharm Pharm Sci. 2010;13:351–61.

    CAS  PubMed  Google Scholar 

  28. Delgado D, Gascón AR, Pozo-Rodríguez A, Echevarría E, Pérez A, Garibay R, et al. Dextran–protamine–solid lipid nanoparticles as a non-viral vector for gene therapy: in vitro characterization and in vivo transfection after intravenous administration to mice. Int J Pharm. 2012;425:35–43.

    CAS  PubMed  Google Scholar 

  29. Rasmussen RV, Fowler VG Jr, Skov R, Bruun NE. Future challenges and treatment of Staphylococcus aureus bacteremia with emphasis on MRSA. Future Microbiol. 2011;6:43–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Love MJ, Bhandari D, Dobson RC, Billington C. Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics. 2018;7:17.

    PubMed Central  Google Scholar 

  31. Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimization and in vitro characterization. Eur J Pharm Biopharm. 2008;68:513e25.

    Google Scholar 

  32. Severino P, da Silva CF, Andrade LN, de Lima OD, Campos J, Souto EB. Alginate nanoparticles for drug delivery and targeting. Curr Pharm Des. 2019;25:1312–34.

    CAS  PubMed  Google Scholar 

  33. Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF. Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater. 2014;268:207–15.

    CAS  PubMed  Google Scholar 

  34. Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int J Biol Macromol. 2014;71:141–6.

    CAS  PubMed  Google Scholar 

  35. dos Silva MS, Cocenza DS, Grillo R, de Melo NF, Tonello PS, de Oliveira LC, et al. Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater. 2011;190:366–74.

    CAS  Google Scholar 

  36. Costa JR, Silva NC, Sarmento B, Pintado M. Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. Eur J Clin Microbiol Infect Dis. 2015;34:1255–62.

    CAS  PubMed  Google Scholar 

  37. Katuwavila NP, Perera AD, Samarakoon SR, Soysa P, Karunaratne V, Amaratunga GA, et al. Chitosan-alginate nanoparticle system efficiently delivers doxorubicin to MCF-7 cells. J Nanomater. 2016;2016:1–12.

    Google Scholar 

  38. Pereira AES, Silva PM, Oliveira JL, Oliveira HC, Fraceto LF. Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids Surf B: Biointerfaces. 2017;150:141–52.

    CAS  PubMed  Google Scholar 

  39. Masalova O, Kulikouskaya V, Shutava T, Agabekov V. Alginate and chitosan gel nanoparticles for efficient protein entrapment. Phys Procedia. 2013;40:69–75.

    CAS  Google Scholar 

  40. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007;24:2198–206.

    CAS  PubMed  Google Scholar 

  41. Nagarwal RC, Kumar R, Pandit JK. Chitosan coated sodium alginate–chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci. 2012;47:678–85.

    CAS  PubMed  Google Scholar 

  42. Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63:456–69.

    CAS  PubMed  Google Scholar 

  43. Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bhunchu S, Rojsitthisak P, Rojsitthisak P. Effects of preparation parameters on the characteristics of chitosan–alginate nanoparticles containing curcumin diethyl disuccinate. J Drug Deliv Sci Tec. 2015;28:64–72.

    CAS  Google Scholar 

  45. Gomez C, Muangnoi C, Sorasitthiyanukarn FN, Wongpiyabovorn J, Rojsitthisak P, Rojsitthisak P. Synergistic effects of photo-irradiation and curcumin-chitosan/alginate nanoparticles on tumor necrosis factor-alpha-induced psoriasis-like proliferation of keratinocytes. Molecules. 2019;24:1388.

    CAS  PubMed Central  Google Scholar 

  46. Mukhopadhyay P, Maity S, Mandal S, Chakraborti AS, Prajapati AK, Kundu PP. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr Polym. 2018 Feb 15;182:42–51.

    CAS  PubMed  Google Scholar 

  47. Zimeta P, Mombrúa AW, Faccioa R, Brugninic G, Miraballesd I, Rufoc C, et al. Optimization and characterization of nisin-loaded alginate-chitosan nanoparticles with antimicrobial activity in lean beef. LWT Food Sci Technol. 2018;91:107–16.

    Google Scholar 

  48. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650–62.

    CAS  PubMed  Google Scholar 

  49. Friedman AJ, Phan J, Schairer DO, Champer J, Qin M, Pirouz A, et al. Antimicrobial and anti-inflammatory activity of chitosan–alginate nanoparticles: a targeted therapy for cutaneous pathogens. J Invest Dermatol. 2013;133:1231–9.

    CAS  PubMed  Google Scholar 

  50. Elassal M, El Menofy N. Chitosan nanoparticles as drug delivery system for cephalexin and its antimicrobial activity against multiidrug resistent bacteria. Int J Pharm Pharm Sci. 2019;10:14–27.

    Google Scholar 

  51. Thai H, Nguyen CT, Thach LT, Tran MT, Mai HD, Nguyen TT, et al. Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo. Sci Rep. 2020;10:1–5.

    Google Scholar 

  52. Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D. Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. Int J Pept Res Ther. 2006;12:131–8.

    CAS  Google Scholar 

  53. Li P, Dai YN, Zhang JP, Wang AQ, Wei Q. Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci. 2008;4:221–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mukhopadhyay P, Kundu PP. Chitosan-graft-PAMAM–alginate core–shell nanoparticles: a safe and promising oral insulin carrier in an animal model. RSC Adv. 2015;5:93995–4007.

    CAS  Google Scholar 

  55. Scolari IR, Páez PL, Sánchez-Borzone ME, Granero GE. Promising chitosan-coated alginate-tween 80 nanoparticles as rifampicin coadministered ascorbic acid delivery carrier against mycobacterium tuberculosis. AAPS PharmSciTech. 2019;20:67.

    CAS  PubMed  Google Scholar 

  56. Taghe S, Mirzaeei S. Preparation and characterization of novel, mucoadhesive ofloxacin nanoparticles for ocular drug delivery. Braz J Pharm Sci. 2019;55:e17105. https://doi.org/10.1590/s2175-97902019000117105.

    Article  CAS  Google Scholar 

  57. Chavanpatil MD, Khdair A, Patil Y, Handa H, Mao G, Panyam J. Polymer-surfactant nanoparticles for sustained release of water-soluble drugs. J Pharm Sci. 2007;96:3379–89.

    CAS  PubMed  Google Scholar 

  58. Swed A, Cordonnier T, Fleury F, Boury F. Protein encapsulation into PLGA nanoparticles by a novel phase separation method using non-toxic solvents. J Nanomed Nanotechnol. 2014;5:241. https://doi.org/10.4172/2157-7439.1000241.

    Article  CAS  Google Scholar 

  59. Sarei F, Dounighi NM, Zolfagharian H, Khaki P, Bidhendi SM. Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian J Pharm Sci. 2013;75:442–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2003;8:1112–20.

    CAS  PubMed  Google Scholar 

  61. Mujtaba MA, Alotaibi NM. Chitosan-sodium alginate nanoparticle as a promising approach for oral delivery of rosuvastatin calcium: formulation, optimization and in vitro characterization. J Pharm Res Int. 2020:50–6.

  62. Arora S, Gupta S, Narang R, Budhiraja R. Amoxicillin loaded chitosan–alginate polyelectrolyte complex nanoparticles as mucopenetrating delivery system for H. pylori Sci Pharm. 2011;79:673–94.

  63. Balaji RA, Raghunathan S, Revathy R. Levofloxacin: formulation and in-vitro evaluation of alginate and chitosan nanospheres. Egypt Pharm J. 2015;14(1):30–5.

    Google Scholar 

  64. Hemmila MR, Mattar A, Taddonio MA, Arbabi S, Hamouda T, Ward PA, et al. Topical nanoemulsion therapy reduces bacterial wound infection and inflammation after burn injury. Surgery. 2010;148:499–509.

    PubMed  PubMed Central  Google Scholar 

  65. Jia Z, Shen D, Xu W. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res2001;333:1–6.

  66. Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2005;339:2693–700.

    Google Scholar 

  67. Assainar SK, Nair SP. Action of chitosan and its derivatives on clinical pathogens. Int J Curr Microbiol App Sci. 2014;3:748–59.

    CAS  Google Scholar 

  68. Didenko LV, Gerasimenko DV, Konstantinova ND, Silkina TA, Avdienko ID, Bannikova GE, et al. Ultrastructural study of chitosan effects on Klebsiella and Staphylococci. Bull Exp Biol Med. 2005;140:356–60.

    CAS  PubMed  Google Scholar 

  69. Raafat D, Von Bargen K, Haas A, Sahl HG. Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol. 2008;74:3764–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Goy RC, Morais ST, Assis OB. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev Bras2016; 26:122–127.

  71. Natrajan D, Srinivasan S, Sundar K, Ravindran A. Formulation of essential oil-loaded chitosan–alginate nanocapsules. J Food Drug Anal. 2015;23:560–8.

    CAS  PubMed  Google Scholar 

  72. Tao IL, Jiang J, Gao Y, Wu C, Liu Y. Biodegradable alginate-chitosan hollow nanospheres for codelivery of doxorubicin and paclitaxel for the effect of human lung cancer A549 cells. Bio Med Res Int. 2018;2018:1–11. https://doi.org/10.1155/2018/4607945.

    Article  CAS  Google Scholar 

  73. Goodarzi A, Khanmohammadi M, Ebrahimi-Barough S, Azami M, Amani A, Baradaran-Rafii A, et al. Alginate-based hydrogel containing taurine-loaded chitosan nanoparticles in biomedical application. Arch Neurosci. 2019;6:e86349. https://doi.org/10.5812/ans.86349.

    Article  Google Scholar 

Download references

Funding

The University Grant Commission, New Delhi, India, and DST-PURSE grant, New Delhi, provided financial support for the purchase of consumables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Chhibber.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, J., Kour, A., Panda, J.J. et al. Exploring Endolysin-Loaded Alginate-Chitosan Nanoparticles as Future Remedy for Staphylococcal Infections. AAPS PharmSciTech 21, 233 (2020). https://doi.org/10.1208/s12249-020-01763-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01763-4

KEY WORDS

Navigation