Skip to main content
Log in

Development of Novel Chimeric Endolysin Conjugated with Chitosan-Zn-Metal–Organic Framework Nanocomposites with Antibacterial Activity

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial diseases have been considered the most crucial issue and are threatening human health all around the world. Also, resistance to antimicrobial drugs has become a big hurdle against efficient therapy. As a result, recombinant chimeric endolysin was produced in E. coli host to use as a potential antibacterial agent against bacteria resistance and replacement to conventional antibiotics in this study. Then, chitosan (C)–coated nanoscale metal–organic frameworks (CS-NMOFs) nanocomposite was synthesized as a novel nano delivery system to further improve the antibacterial activity of endolysin. After characterization of nanocomposite with analytical devices such as FT-IR, DLS, and TEM and determining the nanometric size of samples (30 nm to 90 nm), endolysin was covalently (endolysin-CS-NMOFs (C)) and non-covalently (endolysin-CS-NMOFs (NC)) conjugated to nanocomposite. Thereafter, the lytic ability, synergistic interaction, and biofilm reduction manner of endolysin-containing CS-NMOF nanocomposites were evaluated on E. coli, S. aureus, and P. aeruginosa strains. The results depicted an excellent lytic ability of nanocomposites after 24 h and 48 h of treatment, especially endolysin-CS-NMOFs (NC) on E. coli and P. aeruginosa strains. The synergistic interaction between nanocomposite and vancomycin did not attain for P. aeruginosa strain whereas the reverse was true for E. coli and S. aureus strains at 8 ng/mL concentration. Next, nanocomposites demonstrated potential biofilm reduction activities in various strains, especially in S. aureus and P. aeruginosa. Ultimately, our outputs demonstrate an efficient performance of the synthesized nanocomposite as an appropriate substitution for conventional antibiotics against bacteria.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Fodor, A., Abate, B. A., Deák, P., Fodor, L., Gyenge, E., Klein, M. G., et al. (2020). Multidrug resistance (MDR) and collateral sensitivity in bacteria, with special attention to genetic and evolutionary aspects and to the perspectives of antimicrobial peptides—A review. Pathogens, 9, 522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yahav, D., Tau, N., & Shepshelovich, D. (2021). Assessment of data supporting the efficacy of new antibiotics for treating infections caused by multidrug-resistant bacteria. Clinical Infectious Diseases, 72, 1968–1974.

    Article  CAS  PubMed  Google Scholar 

  3. CDC. Cholera and Other Vibrio Illness Surveillance (COVIS). 2016. Available online: https://www.cdc.gov/vibrio/surveillance.html (accessed on 28 January 2019).

  4. Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Microbiology Spectrum, 4, 10.

    Article  Google Scholar 

  5. Miller, S. I. (2016). Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. mBio, 7, e01541-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahmad, M., & Khan, A. U. (2019). Global economic impact of antibiotic resistance: A review. Journal of Global Antimicrobial Resistance, 19, 313–316.

    Article  PubMed  Google Scholar 

  7. Cantas, L., Shah, S. Q. A., Cavaco, L. M., Manaia, C., Walsh, F., Popowska, M., et al. (2013). A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Frontiers in Microbiology, 4, 96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmelcher, M., Shen, Y., Nelson, D. C., Eugster, M. R., Eichenseher, F., Hanke, D. C., et al. (2015). Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. Journal of Antimicrobial Chemotherapy, 70, 1453–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oliveira, H., Melo, L. D., Santos, S. B., Nóbrega, F. L., Ferreira, E. C., Cerca, N., et al. (2013). Molecular aspects and comparative genomics of bacteriophage endolysins. Journal of Virology, 87, 3277–3282.

    Article  Google Scholar 

  10. Yang, H., Linden, S. B., Wang, J., Yu, J., Nelson, D. C., & Wei, H. (2015). A chimeolysin with extended-spectrum streptococcal host range found by an induced lysis-based rapid screening method. Science and Reports, 5, 17257.

    Article  CAS  ADS  Google Scholar 

  11. Fischetti, V. A. (2010). Bacteriophage endolysins: A novel anti-infective to control Gram-positive pathogens. International Journal of Medical Microbiology, 300, 357–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kashani, H. H., Schmelcher, M., Sabzalipoor, H., Hosseini, E. S., & Moniri, R. (2018). Recombinant endolysins as potential therapeutics against antibioticresistant Staphylococcus aureus: Current status of research and novel delivery strategies. Clinical Microbiology Reviews, 31, e00071-17.

    Google Scholar 

  13. Chang, Y., & Ryu, S. (2017). Characterization of a novel cell wall binding domain-containing Staphylococcus aureus endolysin LysSA97. Applied Microbiology and Biotechnology, 101, 147–158.

    Article  CAS  PubMed  Google Scholar 

  14. Yousefi, M., Narmani, A., & Jafari, S. M. (2020). Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Advances in Colloid and Interface Science, 278, 102125.

    Article  CAS  PubMed  Google Scholar 

  15. Narmani, A., Kamali, M., Panahi, Y., Amini, B., & Salimi, A. (2018). Targeting delivery of oxaliplatin with smart PEG-modified PAMAM G4 to colorectal cell line: In vitro studies. Process Biochemistry, 69, 178–187.

    Article  CAS  Google Scholar 

  16. Kumari, R., Sunil, D., & Ningthoujam, R. S. (2020). Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. Journal of Controlled Release, 319, 135–156.

    Article  CAS  PubMed  Google Scholar 

  17. Narmani, A., Arani, M. A. A., Mohammadnejad, J., Vaziri, A. Z., Solymani, S., Yavari, K., et al. (2020). Breast tumor targeting with PAMAM-PEG-5FU-99mTc as a new therapeutic nanocomplex: In in-vitro and in-vivo studies. Biomedical Microdevices, 22, 31.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, Y., Wu, D., Zhong, W., Kuang, S., Luo, Q., Song, L., et al. (2018). Evaluation of the PEG density in the PEGylated chitosan nanoparticles as a drug carrier for curcumin and mitoxantrone. Nanomaterials, 8, 486.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rezvani, M., Mohammadnejad, J., Narmani, A., & Bidaki, K. (2018). Synthesis and in vitro study of modified chitosan polycaprolactam nano-complex as delivery system. International Journal of Biological Macromolecules, 113, 1287–1293.

    Article  CAS  PubMed  Google Scholar 

  20. Narmani, A., & Jafari, S. M. (2021). Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydrate Polymers, 272, 118464.

    Article  CAS  PubMed  Google Scholar 

  21. Narmani, A., Yavari, K., & Mohammadnejad, J. (2017). Imaging, biodistribution and in vitro study of smart 99mTc-PAMAM G4 dendrimer as novel nano-complex. Colloids and Surfaces B, 159, 232–240.

    Article  CAS  Google Scholar 

  22. Naderlou, E., Salouti, M., Amini, B., Amini, A., Narmani, A., Jalilvand, A., Shahbazi, R., et al. (2020). Enhanced sensitivity and efficiency of detection of Staphylococcus aureus based on modified magnetic nanoparticles by photometric systems, Artif Cells Nanomed. Biotechnol, 48, 810–817.

    CAS  Google Scholar 

  23. Wang, X. G., Dong, Z. Y., Cheng, H., Wan, S. S., Chen, W. H., Zou, M. Z., et al. (2015). A multifunctional metal–organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale, 7, 16061–16070.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Zheng, H., Zhang, Y., Liu, L., Wan, W., Guo, P., Nystrom, A. M., et al. (2016). One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. Journal of the American Chemical Society, 138, 962–968.

    Article  CAS  PubMed  Google Scholar 

  25. Daryasari, M. P., Akhgar, M. R., Mamashli, F., Bigdeli, B., & Khoobi, M. (2016). Carbon dots embedded magnetic nanoparticles@ chitosan@ metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. RSC Advances, 107, 105578–105588.

    Article  ADS  Google Scholar 

  26. Ghaffar, I., Imran, M., Perveen, S., Kanwal, T., Saifullah, S., & Bertino, M. F. (2019). Synthesis of chitosan coated metal organic frameworks (MOFs) for increasing vancomycin bactericidal potentials against resistant S. aureus strain. Materials Science and Engineering C, 105, 110111.

    Article  CAS  PubMed  Google Scholar 

  27. Hosseini, E. S., Moniri, R., Goli, Y. D., & Kashani, H. H. (2016). Purification of antibacterial CHAPK protein using a self-cleaving fusion tag and its activity against methicillin-resistant Staphylococcus aureus, Probiotics Antimicrob. Proteins, 8, 202–210.

    CAS  Google Scholar 

  28. Narmani, A., Mohammadnejad, J., & Yavari, K. (2019). Synthesis and evaluation of polyethylene glycol- and folic acid-conjugated polyamidoamine G4 dendrimer as nanocarrier. Journal of Drug Delivery Science and Technology, 50, 278–286.

    Article  CAS  Google Scholar 

  29. Chang, Y., Kim, M., & Ryu, S. (2017). Characterization of a novel endolysin LysSA11 and its utility as a potent biocontrol agent against Staphylococcus aureus on food and utensils. Food Microbiology, 68, 112–120.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, L., Ping, E., Sun, J., Zhang, L., Zhou, Y., Zhong, Y., et al. (2019). Multifunctional Ag@ MOF-5@chitosan non-woven cloth composites for sulfur mustard decontamination and hemostasis. Dalton Transactions, 48, 6951–6959.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, L., Ruess, G. L., & Carreon, M. A. (2015). Cu, Al and Ga based metal organic framework catalysts for the decarboxylation of oleic acid. Catalysis Science and Technology, 5, 2777–2782.

    Article  CAS  Google Scholar 

  32. Zhuang, J., Kuo, C. H., Chou, L. Y., Liu, D. Y., Weerapana, E., & Tsung, C. K. (2014). Optimized Metal-Organic-Framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation. ACS Nano, 8, 2812–2819.

    Article  CAS  PubMed  Google Scholar 

  33. Mekuria, S. L., & Tsai, H.-C. (2015). Preparation of self-assembled core-shell nano structure of conjugated generation 4.5 poly (amidoamine) dendrimer and monoclonal anti-IL-6 antibody as bioimaging probe. Colloids and Surfaces, B Biointerfaces, 135, 253–260.

    Article  CAS  PubMed  Google Scholar 

  34. Li, Y., Yuan, J., Zhanab, S., Hu, J., Guo, Y., Ding, L., Huang, X., & Xiong, Y. (2021). Dynamic light scattering immunosensor based on metal-organic framework mediated gold growth strategy for the ultra-sensitive detection of alpha-fetoprotein. Sensors and Actuators B: Chemical, 341, 130030.

    Article  CAS  Google Scholar 

  35. Son, B., Kong, M., Lee, Y., & Ryu, S. (2021). Development of a novel chimeric endolysin, Lys109 with enhanced lytic activity against Staphylococcus aureus. Frontiers in Microbiology, 11, 615887.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kashani, H. H., Fahimi, H., Goli, Y. D., & Moniri, R. (2017). A novel chimeric endolysin with antibacterial activity against methicillin-resistant Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 7, 290.

    Article  Google Scholar 

  37. Chandrasekaran, M., Kim, K. D., & Chun, S. C. (2020). Antibacterial activity of chitosan nanoparticles: A review. Processes, 8, 1173.

    Article  CAS  Google Scholar 

  38. Reddy, D. N. K., Huang, F.-Y., Wang, S.-P., & Kumar, R. (2020). Synergistic antioxidant and antibacterial activity of curcumin-C3 encapsulated chitosan nanoparticles. Current Pharmaceutical Design, 26, 5021–5029.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, H., Feng, M., Chen, S., Shi, W., & Wang, X. (2020). Incorporation of lysozyme into cellulose nanocrystals stabilized β-chitosan nanoparticles with enhanced antibacterial activity. Carbohydrate Polymers, 236, 115974.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mahnaz Malekian: study concept and design, acquisition of data, drafting of the manuscript. Hossein Fahimi: critical revision of the manuscript for important intellectual content. Sepideh Khaleghi: statistical analysis, administrative, technical and material support, study supervision, analysis, and interpretation of data.

Corresponding author

Correspondence to Sepideh Khaleghi.

Ethics declarations

Ethical Approval

Ethical code: IR.IAU.PS.REC.1398.347.

Consent to Participate

The authors declare that they have consent to participate.

Consent for Publication

The authors declare that they have consent to publish.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekian, M., Fahimi, H., Niri, N.M. et al. Development of Novel Chimeric Endolysin Conjugated with Chitosan-Zn-Metal–Organic Framework Nanocomposites with Antibacterial Activity. Appl Biochem Biotechnol 196, 616–631 (2024). https://doi.org/10.1007/s12010-023-04514-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04514-w

Keywords

Navigation