Skip to main content

Advertisement

Log in

In Vitro Evaluation of the Antibacterial Properties of Tea Tree Oil on Planktonic and Biofilm-Forming Streptococcus mutans

  • Research Article
  • Theme: Formulation and Delivery of Natural Products
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Streptococcus mutans (S. mutans) is the principal etiologic agent in the occurrence of human dental caries and the formation of biofilms on the surface of teeth. Tea tree oil (TTO) has been demonstrated to exhibit a wide range of pharmacological actions that can effectively inhibit the activity of bacteria. In this context, we evaluated the in vitro antimicrobial effects of TTO on S. mutans both during planktonic growth and in biofilms compared with 0.2% CHX. We determined the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) using the microdilution method, the bacteriostatic rate using an MTT assay, and the antimicrobial time using a time–kill assay. Then, we explored the effects of TTO on acid production and cell integrity. Furthermore, the effects of TTO on the biomass and bacterial activity of S. mutans biofilms were studied. Finally, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were used to investigate the structure and activity of biofilms. The MIC and MBC values were 0.125% and 0.25%, and the bacterial inhibition rate was concentration dependent. TTO can effectively inhibit bacterial acid production and destroy the integrity of the cell membrane. Electron micrographs revealed a reduction in bacterial aggregation, inhibited biofilm formation, and reduced biofilm thickness. The effect of TTO was the same as that of 0.2% CHX at a specific concentration. In summary, we suggest that TTO is a potential anticariogenic agent that can be used against S. mutans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Forssten SD, Bjorklund M, Ouwehand AC. Streptococcus mutans, caries and simulation models. Nutrients. 2010;2(3):290–8.

    PubMed  PubMed Central  Google Scholar 

  2. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Alexa VT, Galuscan A, Popescu I, Tirziu E, Obistioiu D, Floare AD, et al. Synergistic/antagonistic potential of natural preparations based on essential oils against Streptococcus mutans from the oral cavity. Molecules. 2019;24(22):4043–58.

    CAS  PubMed Central  Google Scholar 

  4. Dostie S, Alkadi LT, Owen G, Bi J, Shen Y, Haapasalo M, et al. Chemotherapeutic decontamination of dental implants colonized by mature multispecies oral biofilm. J Clin Periodontol. 2017;44(4):403–9.

    CAS  PubMed  Google Scholar 

  5. James P, Worthington HV, Parnell C, Harding M, Lamont T, Cheung A, et al. Chlorhexidine mouthrinse as an adjunctive treatment for gingival health. Cochrane Database Syst Rev. 2017;3:D8676.

    Google Scholar 

  6. Schelz Z, Molnar J, Hohmann J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia. 2006;77(4):279–85.

    CAS  PubMed  Google Scholar 

  7. Graziano TS, Calil CM, Sartoratto A, Franco GC, Groppo FC, Cogo-Muller K. In vitro effects of Melaleuca alternifolia essential oil on growth and production of volatile sulphur compounds by oral bacteria. J Appl Oral Sci. 2016;24(6):582–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Winska K, Maczka W, Lyczko J, Grabarczyk M, Czubaszek A, Szumny A. Essential oils as antimicrobial agents-myth or real alternative? Molecules. 2019;24(11):2130–50.

    CAS  PubMed Central  Google Scholar 

  9. Brun P, Bernabe G, Filippini R, Piovan A. In vitro antimicrobial activities of commercially available tea tree (Melaleuca alternifolia) essential oils. Curr Microbiol. 2019;76(1):108–16.

    CAS  PubMed  Google Scholar 

  10. Rodney J, Sahari J, Mohd K, Mohd S, Sapuan SM. Thermochemical and mechanical properties of tea tree (Melaleuca alternifolia) fibre reinforced tapioca starch composites. e-Polymers. 2015;6(15):1–10.

    Google Scholar 

  11. Li WR, Li HL, Shi QS, Sun TL, Xie XB, Song B, et al. The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi. Appl Microbiol Biotechnol. 2016;100(20):8865–75.

    CAS  PubMed  Google Scholar 

  12. Oliva A, Costantini S, De Angelis M, Garzoli S, Bozovic M, Mascellino MT, et al. High potency of Melaleuca alternifolia essential oil against multi-drug resistant gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Molecules. 2018;23(10):2584–97.

    PubMed Central  Google Scholar 

  13. Shi C, Zhang X, Guo N. The antimicrobial activities and action-mechanism of tea tree oil against food-borne bacteria in fresh cucumber juice. Microb Pathog. 2018;125:262–71.

    CAS  PubMed  Google Scholar 

  14. Muhammad Z, Ramzan R, Abdelazez A, Amjad A, Afzaal M, Zhang S, et al. Assessment of the antimicrobial potentiality and functionality of Lactobacillus plantarum strains isolated from the conventional inner Mongolian fermented cheese against foodborne pathogens. Pathogens. 2019;8(2):71–90.

    CAS  PubMed Central  Google Scholar 

  15. Sun M, Dong J, Xia Y, Shu R. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans. Microb Pathog. 2017;107:212–8.

    CAS  PubMed  Google Scholar 

  16. Grela E, Kozlowska J, Grabowiecka A. Current methodology of MTT assay in bacteria - a review. Acta Histochem. 2018;120(4):303–11.

    CAS  PubMed  Google Scholar 

  17. Wang H, Cheng H, Wang F, Wei D, Wang X. An improved 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. J Microbiol Methods. 2010;82(3):330–3.

    CAS  PubMed  Google Scholar 

  18. Ferro BE, van Ingen J, Wattenberg M, van Soolingen D, Mouton JW. Time-kill kinetics of antibiotics active against rapidly growing mycobacteria. J Antimicrob Chemother. 2015;70(3):811–7.

    CAS  PubMed  Google Scholar 

  19. Menezes BK, Alves IA, Staudt KJ, Beltrame BM, Venz L, Michelin L, et al. Time-kill curves of daptomycin and Monte Carlo simulation for the treatment of bacteraemia caused by Enterococcus faecium. Braz J Microbiol. 2020;51(1):169–76.

    PubMed  Google Scholar 

  20. Dashper SG, Liu SW, Walsh KA, Adams GG, Stanton DP, Ward BR, et al. Streptococcus mutans biofilm disruption by kappa-casein glycopeptide. J Dent. 2013;41(6):521–7.

    CAS  PubMed  Google Scholar 

  21. Xing YH, Wang W, Dai SQ, Liu TY, Tan JJ, Qu GL, et al. Daptomycin exerts rapid bactericidal activity against Bacillus anthracis without disrupting membrane integrity. Acta Pharmacol Sin. 2014;35(2):211–8.

    CAS  PubMed  Google Scholar 

  22. He Z, Huang Z, Jiang W, Zhou W. Antimicrobial activity of Cinnamaldehyde on Streptococcus mutans biofilms. Front Microbiol. 2019;25(10):2241–51.

    Google Scholar 

  23. Ahn KB, Kim AR, Kum KY, Yun CH, Han SH. The synthetic human beta-defensin-3 C15 peptide exhibits antimicrobial activity against Streptococcus mutans, both alone and in combination with dental disinfectants. J Microbiol. 2017;55(10):830–6.

    CAS  PubMed  Google Scholar 

  24. Hasan S, Singh K, Danisuddin M, Verma PK, Khan AU. Inhibition of major virulence pathways of Streptococcus mutans by quercitrin and deoxynojirimycin: a synergistic approach of infection control. PLoS One. 2014;9(3):e91736.

    PubMed  PubMed Central  Google Scholar 

  25. Flemmig TF, Beikler T. Control of oral biofilms. Periodontol 2000. 2011;55(1):9–15.

    PubMed  Google Scholar 

  26. Marsh PD. Microbiology of dental plaque biofilms and their role in oral health and caries. Dent Clin N Am. 2010;54(3):441–54.

    PubMed  Google Scholar 

  27. Ferrini AM, Mannoni V, Aureli P, Salvatore G, Piccirilli E, Ceddia T, et al. Melaleuca alternifolia essential oil possesses potent anti-staphylococcal activity extended to strains resistant to antibiotics. Int J Immunopathol Pharmacol. 2006;19(3):539–44.

    CAS  PubMed  Google Scholar 

  28. Brady A, Loughlin R, Gilpin D, Kearney P, Tunney M. In vitro activity of tea-tree oil against clinical skin isolates of meticillin-resistant and -sensitive Staphylococcus aureus and coagulase-negative staphylococci growing planktonically and as biofilms. J Med Microbiol. 2006;55(Pt 10):1375–80.

    CAS  PubMed  Google Scholar 

  29. Comin VM, Lopes LQ, Quatrin PM, de Souza ME, Bonez PC, Pintos FG, et al. Influence of Melaleuca alternifolia oil nanoparticles on aspects of Pseudomonas aeruginosa biofilm. Microb Pathog. 2016;93:120–5.

    CAS  PubMed  Google Scholar 

  30. Patri G, Sahu A. Role of herbal agents - tea tree oil and aloe vera as cavity disinfectant adjuncts in minimally invasive dentistry-an in vivo comparative study. J Clin Diagn Res. 2017;11(7):C5–9.

    Google Scholar 

  31. Takarada K, Kimizuka R, Takahashi N, Honma K, Okuda K, Kato T. A comparison of the antibacterial efficacies of essential oils against oral pathogens. Oral Microbiol Immunol. 2004;19(1):61–4.

    CAS  PubMed  Google Scholar 

  32. Cheah SE, Li J, Nation RL, Bulitta JB. Novel rate-area-shape modeling approach to quantify bacterial killing and regrowth for in vitro static time-kill studies. Antimicrob Agents Chemother. 2015;59(1):381–8.

    PubMed  Google Scholar 

  33. Brambilla E, Ionescu A, Cazzaniga G, Edefonti V, Gagliani M. The influence of antibacterial toothpastes on in vitro Streptococcus mutans biofilm formation: a continuous culture study. Am J Dent. 2014;27(3):160–6.

    PubMed  Google Scholar 

  34. Wang N, Liu X, Li J, Zhang Q, Li X, An Q, et al. Antibacterial mechanism of the synergistic combination between streptomycin and alcohol extracts from the Chimonanthus salicifolius S. Y Hu leaves J Ethnopharmacol. 2020;250:112467.

    Google Scholar 

  35. Struzycka I. The oral microbiome in dental caries. Pol J Microbiol. 2014;63(2):127–35.

    PubMed  Google Scholar 

  36. Kuramitsu HK. Virulence factors of mutans streptococci: role of molecular genetics. Crit Rev Oral Biol Med. 1993;4(2):159–76.

    CAS  PubMed  Google Scholar 

  37. Dawes C. What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc. 2003;69(11):722–4.

    PubMed  Google Scholar 

  38. Bajpai VK, Sharma A, Baek K. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control. 2013;32(2):582–90.

    CAS  Google Scholar 

  39. Tawakoli PN, Al-Ahmad A, Hoth-Hannig W, Hannig M, Hannig C. Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Investig. 2013;17(3):841–50.

    CAS  PubMed  Google Scholar 

  40. El-Mokhtar MA, Hassanein KM, Ahmed AS, Gad GF, Amin MM, Hassanein OF. Antagonistic activities of cell-free supernatants of lactobacilli against extended-spectrum beta-lactamase producing Klebsiella pneumoniae and Pseudomonas aeruginosa. Infect Drug Resist. 2020;13:543–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108.

    CAS  PubMed  Google Scholar 

  42. Wu M, Xu L, Cai Z, Huang S, Li Y, Lei L, et al. Disinfection of cariogenic pathogens in planktonic lifestyle, biofilm and carious dentine with antimicrobial photodynamic therapy. Photochem Photobiol. 2020;96(1):170–7.

    CAS  PubMed  Google Scholar 

  43. Marsh PD. Dental plaque as a microbial biofilm. Caries Res. 2004;38(3):204–11.

    CAS  PubMed  Google Scholar 

  44. Doll K, Jongsthaphongpun KL, Stumpp NS, Winkel A, Stiesch M. Quantifying implant-associated biofilms: comparison of microscopic, microbiologic and biochemical methods. J Microbiol Methods. 2016;130:61–8.

    CAS  PubMed  Google Scholar 

  45. Xu Z, Liang Y, Lin S, Chen D, Li B, Li L, et al. Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification. Curr Microbiol. 2016;73(4):474–82.

    CAS  PubMed  Google Scholar 

  46. Phumat P, Khongkhunthian S, Wanachantararak P, Okonogi S. Effects of Piper betle fractionated extracts on inhibition of Streptococcus mutans and Streptococcus intermedius. Drug Discov Ther. 2018;12(3):133–41.

    CAS  PubMed  Google Scholar 

  47. Huang X, Zhang K, Deng M, Exterkate R, Liu C, Zhou X, et al. Effect of arginine on the growth and biofilm formation of oral bacteria. Arch Oral Biol. 2017;82:256–62.

    CAS  PubMed  Google Scholar 

  48. Schmidt J, Buenger L, Krohn S, Kallies R, Zeller K, Schneider H, et al. Effect of a bioactive cement on the microbial community in carious dentin after selective caries removal - an in-vivo study. J Dent. 2020;92:103264.

    PubMed  Google Scholar 

  49. Inquimbert C, Bourgeois D, Bravo M, Viennot S, Tramini P, Llodra JC, et al. The oral bacterial microbiome of interdental surfaces in adolescents according to carious risk. Microorganisms. 2019;7(9):319–43.

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of our work by Jiangsu Key Laboratory of Oral Diseases and the technical staff for their contribution in the laboratory materials collection and processing.

Funding

The work described in this paper was supported by a grant from A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD, 2018-87).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Feng Mei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editors: Harsh Chauhan, Abhijit Date and Sonali Dhindwal

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YM., Zhou, HY., Wu, Y. et al. In Vitro Evaluation of the Antibacterial Properties of Tea Tree Oil on Planktonic and Biofilm-Forming Streptococcus mutans. AAPS PharmSciTech 21, 227 (2020). https://doi.org/10.1208/s12249-020-01753-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01753-6

KEY WORDS

Navigation