Skip to main content

Advertisement

Log in

Development and Characterization of Bioadhesive Film Embedded with Lignocaine and Calcium Fluoride Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The formation of biofilm by Streptococcus mutans on the tooth surface is the primary cause of dental caries and periodontal diseases, and fluoride (F) has shown tremendous potential as a therapeutic moiety against these problems. Herein, we report an efficient multi-ingredient bioadhesive film-based delivery system for oral cavity to combat dental problems with an ease of administration. Thiolated chitosan-based bioadhesive film loaded with calcium fluoride nanoparticles (CaF2 NPs) and lignocaine as a continuous reservoir for prolonged delivery was successfully prepared and characterized. The polygonal CaF2 NPs with an average particle size less than 100 nm, PDI 0.253, and + 6.10 mV zeta potential were synthesized and loaded in film. The energy dispersive x-ray (EDX) spectroscopy confirmed the presence 33.13% F content in CaF2 NPs. The characterization of the three film trials for their mechanical strength, bioadhesion, drug release, and permeation enhancement suggested film B as better among the three trials and showed significant outcomes, indicating the potential application of the medicated bioadhesive film. In vitro dissolution studies revealed sustained release pattern of lignocaine and CaF2 NP following Krosmeyer-Peppas model over 8 h. Franz diffusion studies showed the prolonged contact time of film with mucosa that facilitated the transport of CaF2 NPs and lignocaine across the mucosa. Hence, the prepared bioadhesive film-based system showed good potential for better management of dental problems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Treuting PM, Morton TH Jr, Vogel P. Oral cavity and teeth. Comparative anatomy and histology: Elsevier; 2018. p. 115–33.

  2. Lynnerup N, Klaus HD. Fundamentals of human bone and dental biology: structure, function, and development, Ortner’s Identification of Pathological Conditions in Human Skeletal Remains: Elsevier; 2019. p. 35–58.

  3. Nguyen S, Hiorth M. Advanced drug delivery systems for local treatment of the oral cavity. Ther Deliv. 2015;6(5):595–608.

    Article  CAS  Google Scholar 

  4. Melo MA, Guedes SF, Xu HH, Rodrigues LK. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol. 2013;31(8):459–67.

    Article  CAS  Google Scholar 

  5. Levine R, Stillman-Lowe C. Dental caries. The scientific basis of oral health education: Springer; 2019. p. 11–28.

  6. Kulshrestha S, Khan S, Hasan S, Khan ME, Misba L, Khan AU. Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Appl Microbiol Biotechnol. 2016;100(4):1901–14.

    Article  CAS  Google Scholar 

  7. Bala WA, Benitha V, Jeyasubramanian K, Hikku G, Sankar P, Kumar SV. Investigation of anti-bacterial activity and cytotoxicity of calcium fluoride nanoparticles. J Fluor Chem. 2017;193:38–44.

    Article  CAS  Google Scholar 

  8. Doumit M, Omar Machmouchi M, Diab HA. Fluoride in dentistry: use, dosage, and possible hazards. 2017.

  9. Sun L, Chow LC. Preparation and properties of nano-sized calcium fluoride for dental applications. Dent Mater. 2008;24(1):111–6.

    Article  Google Scholar 

  10. Bernkop-Schnürch A, Hornof M, Guggi D. Thiolated chitosans. Eur J Pharm Biopharm. 2004;57(1):9–17.

    Article  Google Scholar 

  11. Sakloetsakun D, Hombach JM, Bernkop-Schnürch A. In situ gelling properties of chitosan-thioglycolic acid conjugate in the presence of oxidizing agents. Biomaterials. 2009;30(31):6151–7.

    Article  CAS  Google Scholar 

  12. Kast CE, Frick W, Losert U, Bernkop-Schnürch A. Chitosan-thioglycolic acid conjugate: a new scaffold material for tissue engineering? Int J Pharm. 2003;256(1–2):183–9.

    Article  CAS  Google Scholar 

  13. Laffleur F, Hintzen F, Rahmat D, Shahnaz G, Millotti G, Bernkop-Schnürch A. Enzymatic degradation of thiolated chitosan. Drug Dev Ind Pharm. 2013;39(10):1531–9.

    Article  CAS  Google Scholar 

  14. Kast CE, Bernkop-Schnürch A. Thiolated polymers—thiomers: development and in vitro evaluation of chitosan–thioglycolic acid conjugates. Biomaterials. 2001;22(17):2345–52.

    Article  CAS  Google Scholar 

  15. Bernkop-Schnürch A, Schwarz V, Steininger S. Polymers with thiol groups: a new generation of mucoadhesive polymers? Pharm Res. 1999;16(6):876–81.

    Article  Google Scholar 

  16. Bernkop-Schnürch A. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev. 2005;57(11):1569–82.

    Article  Google Scholar 

  17. Hornof MD, Kast CE, Bernkop-Schnürch A. In vitro evaluation of the viscoelastic properties of chitosan–thioglycolic acid conjugates. Eur J Pharm Biopharm. 2003;55(2):185–90.

    Article  CAS  Google Scholar 

  18. Inamdar N, Mourya VK. Thiolated chitosan: preparation, properties and applications. 2013. p. 121–50.

  19. Sreenivas S, Pai K. Thiolated chitosans: novel polymers for mucoadhesive drug delivery–a review. Trop J Pharm Res. 2008;7(3):1077–88.

    Article  Google Scholar 

  20. Al-Ajely MS, Ziadan KM, Al-Bader RM. Preparation and characterization of calcium fluoride nano particles for dental applications. Int J Res-Granthaalayah. 2018;6(1):338–46.

    Article  Google Scholar 

  21. Sohail MF, Javed I, Hussain SZ, Sarwar S, Akhtar S, Nadhman A, et al. Folate grafted thiolated chitosan enveloped nanoliposomes with enhanced oral bioavailability and anticancer activity of docetaxel. J Mater Chem B. 2016;4(37):6240–8.

    Article  CAS  Google Scholar 

  22. Shelma R, Sharma CP. Development of lauroyl sulfated chitosan for enhancing hemocompatibility of chitosan. Colloids Surf B Biointerfaces. 2011;84(2):561–70.

    Article  CAS  Google Scholar 

  23. Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011;77(2):187–99.

    Article  CAS  Google Scholar 

  24. Karki S, Kim H, Na S-J, Shin D, Jo K, Lee J. Thin films as an emerging platform for drug delivery. Asian J Pharm Sci. 2016;11(5):559–74.

    Article  Google Scholar 

  25. Hanif M, Zaman M, Chaurasiya V. Polymers used in buccal film: a review. Des Monomers Polym. 2015;18(2):105–11.

    Article  CAS  Google Scholar 

  26. Salehi S, Boddohi S. New formulation and approach for mucoadhesive buccal film of rizatriptan benzoate. Prog Biomater. 2017;6(4):175–87.

    Article  CAS  Google Scholar 

  27. Nair AB, Kumria R, Harsha S, Attimarad M, Al-Dhubiab BE, Alhaider IA. In vitro techniques to evaluate buccal films. J Control Release. 2013;166(1):10–21.

    Article  CAS  Google Scholar 

  28. Madhavi B, Murthy V, Rani A, Kumar G. Buccal film drug delivery system-an innovative and emerging technology. J Mol Pharm Org Process Res. 2013;1(107):2.

    Google Scholar 

  29. Khoirunnisa AR, Joni IM, Panatarani C, Rochima E, Praseptiangga D, editors. UV-screening, transparency and water barrier properties of semi refined iota carrageenan packaging film incorporated with ZnO nanoparticles. AIP Conference Proceedings; 2018: AIP Publishing.

  30. Patil P, Shrivastava S. Fast dissolving oral films: an innovative drug delivery system. Structure. 2012;20(70):50–500.

    Google Scholar 

  31. Al-Salman H, Shaker A, Maan A, Hussein HH. Estimation of lidocaine-HCl in pharmaceutical drugs by HPLC-UV system. Am J Pharm Tech Res. 2017;7:2249–3387.

    Google Scholar 

  32. Pharmacopoeia B. British pharmacopoeia. 2016.

    Google Scholar 

  33. Abruzzo A, Bigucci F, Cerchiara T, Cruciani F, Vitali B, Luppi B. Mucoadhesive chitosan/gelatin films for buccal delivery of propranolol hydrochloride. Carbohydr Polym. 2012;87(1):581–8.

    Article  CAS  Google Scholar 

  34. Sarwar HS, Sohail MF, Saljoughian N, Rehman AU, Akhtar S, Nadhman A, et al. Design of mannosylated oral amphotericin B nanoformulation: efficacy and safety in visceral leishmaniasis. Artif Cells Nanomed Biotechnol. 2018:1–11.

  35. Musazzi UM, Selmin F, Franzé S, Gennari CG, Rocco P, Minghetti P, et al. Poly (methyl methacrylate) salt as film forming material to design orodispersible films. Eur J Pharm Sci. 2018;115:37–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their gratitude to NovaMed Pharmaceuticals Pvt. Ltd. Pakistan, Government College University, Lahore, Pakistan, and Lahore University of Management Sciences, Lahore, Pakistan, for facilitation the research process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Farhan Sohail.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Animal studies were conducted after approval from the institutional ethical committee of Riphah International University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafar, H., Khan, M.I., Sarwar, H.S. et al. Development and Characterization of Bioadhesive Film Embedded with Lignocaine and Calcium Fluoride Nanoparticles. AAPS PharmSciTech 21, 60 (2020). https://doi.org/10.1208/s12249-019-1615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1615-5

KEY WORDS

Navigation