Skip to main content

Advertisement

Log in

Percutaneous Delivery of Antihypertensive Agents: Advances and Challenges

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Hypertension remains a significant risk factor for several cardiovascular disorders including coronary artery disease and heart failure. Despite the large armamentarium of drugs available for the management of high blood pressure, low oral availability is an ongoing challenge. Researchers are constantly developing alternative drug delivery systems. This review focuses on the transcutaneous delivery of antihypertensive agents. The use of diverse technologies for the delivery of specific antihypertensive agents is emphasized. The advances made and the challenges encountered are highlighted. Several transdermal drug delivery strategies are employed for the transport of this group of therapeutic agents across the skin and the most widely used techniques include microneedles, iontophoresis, sonophoresis, and chemical penetration enhancers. Each of these methods has benefits and limitations, and there are ongoing attempts by scientists to address the shortcomings. For instance, skin irritation continues to be a major challenge with iontophoretic transport while the quantity of a medication that can be incorporated into dissolving microneedles is limited. With skin permeation enhancers, concerns relating to cytotoxicity and irritation are common. Even though the use of ultrasound is exciting, this mode of delivery is also accompanied by challenges such as the design of a battery system that is potent enough to drive a low-frequency sonophoretic cymbal array, while still being portable enough to function as a wearable device. Although most researchers report enhanced drug delivery with the aforementioned methods, it is important to deliver therapeutically useful doses of these medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Young A, Ritchey MD, George MG, Hannan J, Wright J. Characteristics of health care practices and systems that excel in hypertension control. Prev Chronic Dis. 2018;15:E73-E.

    Article  Google Scholar 

  2. Go AS, Bauman MA, Coleman King SM, Fonarow GC, Lawrence W, Williams KA, et al. An effective approach to high blood pressure control: a science advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention. J Am Coll Cardiol. 2014;63(12):1230–8.

    Article  PubMed  Google Scholar 

  3. Wang X, Chen H, Essien E, Wu J, Serna O, Paranjpe R, et al. Medication adherence to antihypertensive triple-combination therapy among patients enrolled in a medicare advantage plan. J Manag Care Spec Pharm. 2019;25(6):678–86.

    PubMed  Google Scholar 

  4. Egan BM. Defining Hypertension by Blood Pressure 130/80 mm Hg Leads to an impressive burden of hypertension in young and middle-aged black adults: follow-up in the CARDIA study. J Am Heart Assoc. 2018;7(14).

  5. Muntner P, Carey RM, Gidding S, Jones DW, Taler SJ, Wright JT Jr, et al. Potential US population impact of the 2017 ACC/AHA high blood pressure guideline. Circulation. 2018;137(2):109–18.

    Article  PubMed  Google Scholar 

  6. Bloch MJ. Worldwide prevalence of hypertension exceeds 1.3 billion. J Am Soc Hypertens. 2016;10(10):753–4.

    Article  PubMed  Google Scholar 

  7. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):1269–324.

    Article  CAS  PubMed  Google Scholar 

  8. Son JS, Choi S, Lee G, Jeong SM, Kim SM, Kim K, et al. Blood pressure change from normal to 2017 ACC/AHA defined stage 1 hypertension and cardiovascular risk. J Clin Med. 2019;8(6).

  9. Bolívar JJ. Essential hypertension: an approach to its etiology and neurogenic pathophysiology. Int J Hypertens. 2013;2013:547809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Puar THK, Mok Y, Debajyoti R, Khoo J, How CH, Ng AKH. Secondary hypertension in adults. Singap Med J. 2016;57(5):228–32.

    Article  Google Scholar 

  11. Nadella V, Howell SJ. Hypertension: pathophysiology and perioperative implications. BJA Education. 2015;15(6):275–9.

    Article  Google Scholar 

  12. Sereti E, Stamatelopoulos KS, Zakopoulos NA, Evangelopoulou A, Mavragani CP, Evangelopoulos ME. Hypertension: an immune related disorder? Clin Immunol. 2019;108247.

  13. Park HW, Kim JY, Choi S-K, Lee Y-H, Zeng W, Kim KH, et al. Serine-threonine kinase with-no-lysine 4 (WNK4) controls blood pressure via transient receptor potential canonical 3 (TRPC3) in the vasculature. Proc Natl Acad Sci U S A. 2011;108(26):10750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Franceschini N, Chasman DI, Cooper-DeHoff RM, Arnett DK. Genetics, ancestry, and hypertension: implications for targeted antihypertensive therapies. Curr Hypertens Rep. 16(8):2014, 461.

  15. Charles L, Triscott J, Dobbs B. Secondary Hypertension: discovering the underlying cause. Am Fam Physician. 2017;96(7):453–61.

    PubMed  Google Scholar 

  16. Sousa AC, Palma Dos Reis R, Pereira A, Borges S, Freitas AI, Guerra G, et al. Relationship between ADD1 Gly460Trp gene polymorphism and essential hypertension in Madeira Island. Medicine (Baltimore). 2017;96(42):e7861.

    Article  CAS  Google Scholar 

  17. Long AN, Dagogo-Jack S. Comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection. J Clin Hypertens (Greenwich). 2011;13(4):244–51.

    Article  Google Scholar 

  18. Kim JR, Kiefe CI, Liu K, Williams OD, Jacobs DR Jr, Oberman A. Heart rate and subsequent blood pressure in young adults: the CARDIA study. Hypertension. 1999;33(2):640–6.

    Article  CAS  PubMed  Google Scholar 

  19. Wright JM, Musini VM, Gill R. First-line drugs for hypertension. Cochrane Database Syst Rev. 2018;4:Cd001841.

    PubMed  Google Scholar 

  20. Prisant LM, Bottini B, DiPiro JT, Carr AA. Novel drug-delivery systems for hypertension. Am J Med. 1992;93(2a):45 s–55 s.

    Article  CAS  Google Scholar 

  21. Hainer JW, Sugg J. Metoprolol succinate extended release/hydrochlorothiazide combination tablets. Vasc Health Risk Manag. 2007;3(3):279–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Abiandu I, Ita K. Transdermal delivery of potassium chloride with solid microneedles. J Drug Deliv Sci Technol. 2019;53:101216.

    Article  CAS  Google Scholar 

  23. Ronnander, P., L. Simon, and A. Koch. Transdermal delivery of 985 sumatriptan succinate using iontophoresis and dissolving 986 microneedles. J Pharm Sci. 2019;108(11):3649–365624.

  24. Ita K. Transdermal delivery of heparin: physical enhancement techniques. Int J Pharm. 2015;496(2):240–9.

  25. Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL. Challenges and opportunities in dermal/transdermal delivery. Ther Deliv. 2010;1(1):109–31.

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen Julia IK, Popova Inna. Transdermal delivery of carbamazepine and tiagabine hydrochloride. Pharmaceutics. 2016;15;8(4).

  27. Gelker M, Mrotzek J, Ichter A, Müller-Goymann CC, Viöl W. Influence of pulse characteristics and power density on stratum corneum permeabilization by dielectric barrier discharge. Biochim Biophys Acta Gen Subj. 2019;1863(10):1513–23.

    Article  CAS  PubMed  Google Scholar 

  28. Perticaroli S, Yeomans DJ, Wireko FC, Webber JT, Werchowski KM, Cambron RT, et al. Translating chemometric analysis into physiological insights from in vivo confocal Raman spectroscopy of the human stratum corneum. Biochim Biophys Acta. 2019;1861(2):403–9.

    Article  CAS  Google Scholar 

  29. Qadri GR, Ahad A, Aqil M, Imam SS, Ali A. Invasomes of isradipine for enhanced transdermal delivery against hypertension: formulation, characterization, and in vivo pharmacodynamic study. Artif Cells Nanomed Biotechnol. 2017;45(1):139–45.

    Article  CAS  PubMed  Google Scholar 

  30. Cevc G, Schätzlein A, Richardsen H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim Biophys Acta. 2002;1564(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  31. Singhal M, Merino V, Rosini M, Cavalli A, Kalia YN. Controlled iontophoretic delivery in vitro and in vivo of ARN14140-A multitarget compound for Alzheimer’s disease. Mol Pharm. 2019.

  32. Robertson J, Squire M, Becker S. A Thermoelectric device for coupling fluid temperature regulation during continuous skin sonoporation or sonophoresis. AAPS PharmSciTech. 2019;20(4):147.

    Article  PubMed  CAS  Google Scholar 

  33. Ita K. Dissolving microneedles for transdermal drug delivery: advances and challenges. Biomed Pharmacother. 2017;93:1116–27.

    Article  CAS  PubMed  Google Scholar 

  34. Anirudhan TS, Nair SS. Development of voltage gated transdermal drug delivery platform to impose synergistic enhancement in skin permeation using electroporation and gold nanoparticle. Mater Sci Eng C. 2019;102:437–46.

  35. Ruan J, Wan X, Quan P, Liu C, Fang L. Investigation of effect of isopropyl palmitate on drug release from transdermal patch and molecular dynamics study. AAPS PharmSciTech. 2019;20(5):174.

    Article  PubMed  CAS  Google Scholar 

  36. Rautio J, Nevalainen T, Taipale H, Vepsäläinen J, Gynther J, Laine K, et al. Piperazinylalkyl prodrugs of naproxen improve in vitro skin permeation. Eur J Pharm Sci. 2000;11(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  37. Güngör S, Ozsoy Y. Systemic delivery of antihypertensive drugs via skin. Ther Deliv. 2012;3(9):1101–16.

    Article  PubMed  CAS  Google Scholar 

  38. Shah SM, Ashtikar M, Jain AS, Makhija DT, Nikam Y, Gude RP, et al. LeciPlex, invasomes, and liposomes: a skin penetration study. Int J Pharm. 2015;490(1):391–403.

    Article  CAS  PubMed  Google Scholar 

  39. El-Nabarawi MA, Shamma RN, Farouk F, Nasralla SM. Dapsone-loaded invasomes as a potential treatment of acne: preparation, characterization, and in vivo skin deposition assay. AAPS PharmSciTech. 2018;19(5):2174–84.

    Article  CAS  PubMed  Google Scholar 

  40. Tran TT-D, Tran PH-L, Nguyen MNU, Tran KTM, Pham MN, Tran PC, et al. Amorphous isradipine nanosuspension by the sonoprecipitation method. Int J Pharm. 2014;474(1):146–50.

    Article  CAS  PubMed  Google Scholar 

  41. Kumar V, Kharb R, Chaudhary H. Optimization & design of isradipine loaded solid lipid nanobioparticles using rutin by Taguchi methodology. Int J Biol Macromol. 2016;92:338–46.

    Article  CAS  PubMed  Google Scholar 

  42. Kamran M, Ahad A, Aqil M, Imam SS, Sultana Y, Ali A. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: in vitro characterization and in vivo pharmacokinetic assessment. Int J Pharm. 2016;505(1-2):147–58.

    Article  CAS  PubMed  Google Scholar 

  43. Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst. 1996;13(3-4):257–388.

    Article  CAS  PubMed  Google Scholar 

  44. Cevc G, Gebauer D, Stieber J, Schatzlein A, Blume G. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys Acta. 1998;1368(2):201–15.

    Article  CAS  PubMed  Google Scholar 

  45. Cevc G, Gebauer D. Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier. Biophys J. 2003;84(2 Pt 1):1010–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Caddeo C, Manca ML, Peris JE, Usach I, Diez-Sales O, Matos M, et al. Tocopherol-loaded transfersomes: in vitro antioxidant activity and efficacy in skin regeneration. Int J Pharm. 2018;551(1-2):34–41.

    Article  CAS  PubMed  Google Scholar 

  47. Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AE, et al. Pharmacodynamic study of eprosartan mesylate-loaded transfersomes Carbopol(R) gel under Dermaroller(R) on rats with methyl prednisolone acetate-induced hypertension. Biomed Pharmacother. 2017;89:177–84.

    Article  CAS  PubMed  Google Scholar 

  48. Morsi NM, Aboelwafa AA, Dawoud MH. Improved bioavailability of timolol maleate via transdermal transfersomal gel: statistical optimization, characterization, and pharmacokinetic assessment. J Adv Res. 2016;7(5):691–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun X, Luan Q, Qiu S. Valsartan prevents glycerol-induced acute kidney injury in male albino rats by downregulating TLR4 and NF-κB expression. Int J Biol Macromol. 2018;119:565–71.

    Article  CAS  PubMed  Google Scholar 

  50. Kumar A, Davern P, Hodnett BK, Hudson SP. Carrier particle mediated stabilization and isolation of valsartan nanoparticles. Colloids Surf B: Biointerfaces. 2019;175:554–63.

    Article  CAS  PubMed  Google Scholar 

  51. de Oliveira RS, Boffo EF, Reis FCC, Nikolaou S, Andriani KF, Caramori GF, et al. A ruthenium polypyridyl complex with the antihypertensive drug valsartan: synthesis, theoretical calculations and interaction studies with human serum albumin. Polyhedron. 2016;114:232–41.

    Article  CAS  Google Scholar 

  52. Ahad A, Aqil M, Ali A. Investigation of antihypertensive activity of carbopol valsartan transdermal gel containing 1,8-cineole. Int J Biol Macromol. 2013.

  53. Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M, Ali A. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan. Nanomed Nanotechnol Biol Med. 2012;8(2):237–49.

    Article  CAS  Google Scholar 

  54. Ita K. Transdermal iontophoretic drug delivery: advances and challenges. J Drug Target. 2015:1–6.

  55. Guy RH, Kalia YN, Delgado-Charro MB, Merino V, Lopez A, Marro D. Iontophoresis: electrorepulsion and electroosmosis. J Control Release. 2000;64(1-3):129–32.

    Article  CAS  PubMed  Google Scholar 

  56. Takeuchi I, Takeshita T, Suzuki T, Makino K. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for positively charged drugs. Colloids Surf B: Biointerfaces. 2017;160:520–6.

    Article  CAS  PubMed  Google Scholar 

  57. Silva SM, Hu L, Sousa JJ, Pais AA, Michniak-Kohn BB. A combination of nonionic surfactants and iontophoresis to enhance the transdermal drug delivery of ondansetron HCl and diltiazem HCl. Eur J Pharm Biopharm. 2012;80(3):663–73.

    Article  CAS  PubMed  Google Scholar 

  58. Zakzewski CA, Amory DW, Jasaitis DK, Li JK. Iontophoretically enhanced transdermal delivery of an ACE inhibitor in induced hypertensive rabbits: preliminary report. Cardiovasc Drugs Ther. 1992;6(6):589–95.

    Article  CAS  PubMed  Google Scholar 

  59. Zakzewski CA, Li JKJ. Pulsed mode constant current iontophoretic transdermal metaprolol tartrate delivery in established acute hypertensive rabbits. J Control Release. 1991;17(2):157–62.

    Article  CAS  Google Scholar 

  60. Ramkanth S, Chetty CM, Sudhakar Y, Thiruvengadarajan VS, Anitha P, Gopinath C. Development, characterization & invivo evaluation ofproniosomal based transdermal delivery system of Atenolol. Fut J Pharm Sci. 2018;4(1):80–7.

  61. Trinh LH, Takzare A, Ghafoor DD, Siddiqi AF, Ravali S, Shalbaf M, et al. Trachyspermum copticum essential oil incorporated niosome for cancer treatment. J Drug Deliv Sci Technol. 2019;52:818–24.

    Article  CAS  Google Scholar 

  62. Emad Eldeeb A, Salah S, Ghorab M. Proniosomal gel-derived niosomes: an approach to sustain and improve the ocular delivery of brimonidine tartrate; formulation, in-vitro characterization, and in-vivo pharmacodynamic study. Drug Deliv. 2019;26(1):509–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gugleva V, Titeva S, Rangelov S, Momekova D. Design and in vitro evaluation of doxycycline hyclate niosomes as a potential ocular delivery system. Int J Pharm. 2019;567:118431.

    Article  CAS  PubMed  Google Scholar 

  64. Mokhtar M, Sammour OA, Hammad MA, Megrab NA. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm. 2008;361(1-2):104–11.

    Article  CAS  PubMed  Google Scholar 

  65. Qumbar M, Ameeduzzafar, Imam SS, Ali J, Ahmad J, Ali A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: in-vitro characterization and in-vivo activity. Biomed Pharmacother. 2017;93:255–66.

    Article  CAS  PubMed  Google Scholar 

  66. Sankar V, Ruckmani K, Durga S, Jailani S. Proniosomes as drug carriers. Pak J Pharm Sci. 2010;23(1):103–7.

    CAS  PubMed  Google Scholar 

  67. Ibrahim MM, Sammour OA, Hammad MA, Megrab NA. In vitro evaluation of proniosomes as a drug carrier for flurbiprofen. AAPS PharmSciTech. 2008;9(3):782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yasam VR, Jakki SL, Natarajan J, Venkatachalam S, Kuppusamy G, Sood S, et al. A novel vesicular transdermal delivery of nifedipine - preparation, characterization and in vitro/in-vivo evaluation. Drug Deliv. 2016;23(2):619–30.

    Article  CAS  PubMed  Google Scholar 

  69. Shringirishi M, Mahor A, Gupta R, Prajapati SK, Bansal K, Kesharwani P. Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: an in vitro and in vivo evaluation. J Drug Deliv Sci Technol. 2017;41:344–50.

    Article  CAS  Google Scholar 

  70. Kapoor H, Aqil M, Imam SS, Sultana Y, Ali A. Formulation of amlodipine nano lipid carrier: formulation design, physicochemical and transdermal absorption investigation. J Drug Deliv Sci Technol. 2019;49:209–18.

    Article  CAS  Google Scholar 

  71. Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):27–40.

    Article  CAS  PubMed  Google Scholar 

  72. Bhaskar K, Krishna Mohan C, Lingam M, Jagan Mohan S, Venkateswarlu V, Madhusudan Rao Y, et al. Development of SLN and NLC enriched hydrogels for transdermal delivery of nitrendipine: in vitro and in vivo characteristics. Drug Dev Ind Pharm. 2009;35(1):98–113.

    Article  CAS  PubMed  Google Scholar 

  73. Mittal A, Sara UV, Ali A, Aqil M. The effect of penetration enhancers on permeation kinetics of nitrendipine in two different skin models. Biol Pharm Bull. 2008;31(9):1766–72.

    Article  CAS  PubMed  Google Scholar 

  74. Pandya NT, Jani P, Vanza J, Tandel H. Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension. Colloids Surf B: Biointerfaces. 2018;165:37–44.

    Article  CAS  PubMed  Google Scholar 

  75. Hirakawa Y, Ueda H, Miyano T, Kamiya N, Goto M. New insight into transdermal drug delivery with supersaturated formulation based on co-amorphous system. Int J Pharm. 2019;569:118582.

    Article  CAS  PubMed  Google Scholar 

  76. Taveira SF, Varela-Garcia A, Dos Santos SB, Marreto RN, Martin-Pastor M, Concheiro A, et al. Cyclodextrin-based poly(pseudo)rotaxanes for transdermal delivery of carvedilol. Carbohydr Polym. 2018;200:278–88.

    Article  CAS  PubMed  Google Scholar 

  77. Lorenzo-Veiga B, Sigurdsson HH, Loftsson T, Alvarez-Lorenzo C. Cyclodextrin(-)amphiphilic copolymer supramolecular assemblies for the ocular delivery of natamycin. Nanomaterials (Basel). 2019;9(5).

  78. Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: formulation development, stability issues, basic considerations and applications. J Control Release. 2018;270:203–25.

    Article  CAS  PubMed  Google Scholar 

  79. Zaid Alkilani A, Hamed R, Al-Marabeh S, Kamal A, Abu-Huwaij R, Hamad I. Nanoemulsion-based film formulation for transdermal delivery of carvedilol. J Drug Deliv Sci Technol. 2018;46:122–8.

    Article  CAS  Google Scholar 

  80. Dixit N, Kohli K, Baboota S. Nanoemulsion system for the transdermal delivery of a poorly soluble cardiovascular drug. PDA J Pharm Sci Technol. 2008;62(1):46–55.

    CAS  PubMed  Google Scholar 

  81. Rizwan M, Aqil M, Azeem A, Talegaonkar S, Sultana Y, Ali A. Enhanced transdermal delivery of carvedilol using nanoemulsion as a vehicle. J Exp Nanosci. 2010;5(5):390–411.

    Article  CAS  Google Scholar 

  82. El-Sayed R, Waraky A, Ezzat K, Albabtain R, ElGammal K, Shityakov S, et al. Degradation of pristine and oxidized single wall carbon nanotubes by CYP3A4. Biochem Biophys Res Commun. 2019;515(3):487–92.

    Article  CAS  PubMed  Google Scholar 

  83. Shojaei TR, Azhari S. Chapter 16 - Fabrication, functionalization, and dispersion of carbon nanotubes. In: Barhoum A, ASH M, editors. Emerging Applications of Nanoparticles and Architecture Nanostructures: Elsevier; 2018. p. 501–31.

  84. Strasinger C, Paudel KS, Wu J, Hammell D, Pinninti RR, Hinds BJ, et al. Programmable transdermal clonidine delivery through voltage-gated carbon nanotube membranes. J Pharm Sci. 2014;103(6):1829–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vatansever E, Arslan D, Nofar M. Polylactide cellulose-based nanocomposites. Int J Biol Macromol. 2019;137:912–38.

    Article  CAS  PubMed  Google Scholar 

  86. Dutta K, Das B, Orasugh JT, Mondal D, Adhikari A, Rana D, et al. Bio-derived cellulose nanofibril reinforced poly(N-isopropylacrylamide)-g-guar gum nanocomposite: an avant-garde biomaterial as a transdermal membrane. Polymer. 2018;135:85–102.

    Article  CAS  Google Scholar 

  87. Ita K. Perspectives on transdermal electroporation. Pharmaceutics. 2016;8(1).

  88. Batista Napotnik T, Miklavčič D. In vitro electroporation detection methods–An overview. Bioelectrochemistry. 2018;120:166–82.

    Article  CAS  PubMed  Google Scholar 

  89. Becker S, Zorec B, Miklavcic D, Pavselj N. Transdermal transport pathway creation: electroporation pulse order. Math Biosci. 2014;257:60–8.

    Article  CAS  PubMed  Google Scholar 

  90. Munch S, Wohlrab J, Neubert RHH. Dermal and transdermal delivery of pharmaceutically relevant macromolecules. Eur J Pharm Biopharm. 2017;119:235–42.

    Article  CAS  PubMed  Google Scholar 

  91. Vanbever R, Lecouturier N, Preat V. Transdermal delivery of metoprolol by electroporation. Pharm Res. 1994;11(11):1657–62.

    Article  CAS  PubMed  Google Scholar 

  92. Denet AR, Preat V. Transdermal delivery of timolol by electroporation through human skin. J Control Release. 2003;88(2):253–62.

    Article  CAS  PubMed  Google Scholar 

  93. Sabri AH, Ogilvie J, Abdulhamid K, Shpadaruk V, McKenna J, Segal J, et al. Expanding the applications of microneedles in dermatology. Eur J Pharm Biopharm. 2019;140:121–40.

    Article  PubMed  Google Scholar 

  94. Kelchen MN, Brogden NK. In vitro skin retention and drug permeation through intact and microneedle pretreated skin after application of propranolol loaded microemulsions. Pharm Res. 2018;35(12):228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Li Y, Liu F, Su C, Yu B, Liu D, Chen HJ, et al. Biodegradable Therapeutic microneedle patch for rapid antihypertensive treatment. ACS Appl Mater Interfaces. 2019.

  96. Luu E, Ita KB, Morra MJ, Popova IE. The influence of microneedles on the percutaneous penetration of selected antihypertensive agents: diltiazem hydrochloride and perindopril erbumine. Curr Drug Deliv. 2018;15(10):1449–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ita KB, Hatsakorzian N, Tolstikov V. Microneedle-mediated delivery of atenolol and bisoprolol hemifumarate. J Nanopharm Drug Del. 2013;1(1):38–44.

  98. Kaur M, Ita KB, Popova IE, Parikh SJ, Bair DA. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate. Eur J Pharm Biopharm. 2014;86(2):284–91.

    Article  CAS  PubMed  Google Scholar 

  99. Escobar-Chavez JJ, Bonilla-Martinez D, Villegas-Gonzalez MA, Rodriguez-Cruz IM, Dominguez-Delgado CL. The use of sonophoresis in the administration of drugs throughout the skin. J Pharm Pharm Sci. 2009;12(1):88–115.

    Article  CAS  PubMed  Google Scholar 

  100. Manikkath J, Hegde AR, Kalthur G, Parekh HS, Mutalik S. Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen. Int J Pharm. 2017.

  101. Ita K. Recent progress in transdermal sonophoresis. Pharm Dev Technol. 2015:1–9.

  102. Ita KB, Popova IE. Influence of sonophoresis and chemical penetration enhancers on percutaneous transport of penbutolol sulfate. Pharm Dev Technol. 2015:1–6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Ita.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ita, K., Ashong, S. Percutaneous Delivery of Antihypertensive Agents: Advances and Challenges. AAPS PharmSciTech 21, 56 (2020). https://doi.org/10.1208/s12249-019-1583-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1583-9

Keywords

Navigation