Skip to main content

Advertisement

Log in

In Vitro Skin Retention and Drug Permeation through Intact and Microneedle Pretreated Skin after Application of Propranolol Loaded Microemulsions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Topical beta-blockers are efficacious for treating infantile hemangiomas, but no formulations have been specifically optimized for skin delivery. Our objective was to quantify skin concentrations and drug permeation of propranolol (a nonselective beta-blocker) after application of microemulsions to intact and microneedle pretreated skin.

Methods

Four propranolol-loaded microemulsions were characterized for droplet size, surface charge, conductivity, pH, drug solubility, and drug release. Skin concentrations and drug permeation through skin were quantified using LC-MS. Skin-to-receiver ratios were used to compare the microemulsion formulations to a drug-in-PBS solution.

Results

Propranolol solubility was significantly greater in microemulsions vs PBS. Cumulative drug release from the microemulsions over 24 h ranged from 13 to 26%. Skin concentrations and drug permeation through intact skin was significantly higher from PBS; however, the skin-to-receiver ratios were significantly higher for water-rich microemulsions compared to PBS or surfactant-rich microemulsions. Microneedle pretreatment significantly increased skin concentrations for all formulations. Skin-to-receiver ratios significantly increased after microneedle pretreatment for surfactant-rich microemulsions.

Conclusions

Microemulsion formulation can be altered to elicit different drug delivery profiles through MN-treated skin. This could be advantageous for maximizing local skin drug concentrations and improving dosing schedules for infantile hemangioma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ER:

Enhancement ratio

IH:

Infantile hemangioma

MN:

Microneedle

References

  1. Guy RH. Transdermal drug delivery. Handb Exp Pharmacol. 2010;197:399–410.

    Article  CAS  Google Scholar 

  2. Flynn G. Cutaneous and transdermal delivery - processes and systems of delivery. 4th ed. In: Banker G, Siepmann J, Rhodes C, editors. Modern Pharmaceutics. Boca Raton: CRC Press; 2002.

    Google Scholar 

  3. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68.

    Article  CAS  Google Scholar 

  4. Zhang Y, Brown K, Siebenaler K, Determan A, Dohmeier D, Hansen K. Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action. Pharm Res. 2012;29(1):170–7.

    Article  Google Scholar 

  5. Shin JU, Kim JD, Kim HK, Kang HK, Joo C, Lee JH, et al. The use of biodegradable microneedle patches to increase penetration of topical steroid for prurigo nodularis. Eur J Dermatol. 2018;28(1):71–7.

    PubMed  Google Scholar 

  6. Choi SY, Kwon HJ, Ahn GR, Ko EJ, Yoo KH, Kim BJ, Lee C, Kim D. Hyaluronic acid microneedle patch for the improvement of crow’s feet wrinkles. Dermatol Ther. 2017;30(6). https://doi.org/10.1111/dth.12546

    Article  Google Scholar 

  7. Milewski M, Stinchcomb AL. Vehicle composition influence on the microneedle-enhanced transdermal flux of naltrexone hydrochloride. Pharm Res. 2011;28(1):124–34.

    Article  CAS  Google Scholar 

  8. Gujjar M, Banga AK. Vehicle influence on permeation through intact and compromised skin. Int J Pharm. 2014;472(1–2):362–8.

    Article  CAS  Google Scholar 

  9. Pappinen S, Urtti A. Microemulsions. In: Dragicevic N, Maibach HI, editors. Percutaneous penetration enhancers chemical methods in penetration enhancement: Nanocarriers. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016. p. 253–62.

    Chapter  Google Scholar 

  10. Heuschkel S, Goebel A, Neubert RH. Microemulsions--modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci. 2008;97(2):603–31.

    Article  CAS  Google Scholar 

  11. Songkro S, Lo NL, Tanmanee N, Maneenuan D, Boonme P. In vitro release, skin permeation and retention of benzophenone-3 from microemulsions (o/w and w/o). J Drug Deliv Sci Technol. 2014;24(6):703–11.

    Article  CAS  Google Scholar 

  12. Amarji B, Garg NK, Singh B, Katare OP. Microemulsions mediated effective delivery of methotrexate hydrogel: more than a tour de force in psoriasis therapeutics. J Drug Target. 2016;24(2):147–60.

    Article  CAS  Google Scholar 

  13. Ren Q, Deng C, Meng L, Chen Y, Chen L, Sha X, et al. In vitro, ex vivo, and in vivo evaluation of the effect of saturated fat acid chain length on the transdermal behavior of ibuprofen-loaded microemulsions. J Pharm Sci. 2014;103(6):1680–91.

    Article  CAS  Google Scholar 

  14. Baroli B, Lopez-Quintela MA, Delgado-Charro MB, Fadda AM, Blanco-Mendez J. Microemulsions for topical delivery of 8-methoxsalen. J Control Release. 2000;69(1):209–18.

    Article  CAS  Google Scholar 

  15. Mitragotri S. Synergistic effect of enhancers for transdermal drug delivery. Pharm Res. 2000;17(11):1354–9.

    Article  CAS  Google Scholar 

  16. Zu Q, Yu Y, Bi X, Zhang R, Di L. Microneedle-assisted percutaneous delivery of a Tetramethylpyrazine-loaded microemulsion. Molecules. 2017;22(11).

    Article  Google Scholar 

  17. Munden A, Butschek R, Tom WL, Marshall JS, Poeltler DM, Krohne SE, et al. Prospective study of infantile haemangiomas: incidence, clinical characteristics and association with placental anomalies. Br J Dermatol. 2014;170(4):907–13.

    Article  CAS  Google Scholar 

  18. Leaute-Labreze C, Dumas de la Roque E, Hubiche T, Boralevi F, Thambo JB, Taieb A. Propranolol for severe hemangiomas of infancy. N Engl J Med. 2008;358(24):2649–51.

    Article  CAS  Google Scholar 

  19. Leaute-Labreze C, Harper JI, Hoeger PH. Infantile haemangioma. Lancet. 2017;390(10089):85–94.

    Article  Google Scholar 

  20. Painter SL, Hildebrand GD. Review of topical beta blockers as treatment for infantile hemangiomas. Surv Ophthalmol. 2016;61(1):51–8.

    Article  Google Scholar 

  21. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.

    Article  CAS  Google Scholar 

  22. Montenegro L, Carbone C, Condorelli G, Drago R, Puglisi G. Effect of oil phase lipophilicity on in vitro drug release from o/w microemulsions with low surfactant content. Drug Dev Ind Pharm. 2006;32(5):539–48.

    Article  CAS  Google Scholar 

  23. Ibrahim SA, Li SK. Efficiency of fatty acids as chemical penetration enhancers: mechanisms and structure enhancement relationship. Pharm Res. 2010;27(1):115–25.

    Article  CAS  Google Scholar 

  24. Kaur G, Mehta SK. Developments of Polysorbate (tween) based microemulsions: preclinical drug delivery, toxicity and antimicrobial applications. Int J Pharm. 2017;529(1–2):134–60.

    Article  CAS  Google Scholar 

  25. Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev. 2002;54(Suppl 1):S77–98.

    Article  CAS  Google Scholar 

  26. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56(5):603–18.

    Article  CAS  Google Scholar 

  27. Rhee YS, Choi JG, Park ES, Chi SC. Transdermal delivery of ketoprofen using microemulsions. Int J Pharm. 2001;228(1–2):161–70.

    Article  CAS  Google Scholar 

  28. Hua L, Weisan P, Jiayu L, Ying Z. Preparation, evaluation, and NMR characterization of vinpocetine microemulsion for transdermal delivery. Drug Dev Ind Pharm. 2004;30(6):657–66.

    Article  CAS  Google Scholar 

  29. Kreilgaard M, Pedersen EJ, Jaroszewski JW. NMR characterisation and transdermal drug delivery potential of microemulsion systems. J Control Release. 2000;69(3):421–33.

    Article  CAS  Google Scholar 

  30. Delgado-Charro MB, Iglesias-Vilas G, Blanco-Méndez J, López-Quintela MA, Marty J-P, Guy RH. Delivery of a hydrophilic solute through the skin from novel microemulsion systems. Eur J Pharm Biopharm. 1997;43(1):37–42.

    Article  Google Scholar 

  31. Tabosa MAM, de Andrade ARB, Lira AAM, Sarmento VHV, de Santana DP, Leal LB. Microemulsion formulations for the transdermal delivery of Lapachol. AAPS PharmSciTech. 2018;19(4):1837–46.

    Article  CAS  Google Scholar 

  32. Lu GW, Gao P. CHAPTER 3 - emulsions and microemulsions for topical and transdermal drug delivery A2 - kulkarni, Vitthal S. Handbook of non-invasive drug delivery systems. Boston: William Andrew Publishing; 2010. p. 59–94.

    Google Scholar 

  33. Changez M, Varshney M, Chander J, Dinda AK. Effect of the composition of lecithin/n-propanol/isopropyl myristate/water microemulsions on barrier properties of mice skin for transdermal permeation of tetracaine hydrochloride: in vitro. Colloids Surf B: Biointerfaces. 2006;50(1):18–25.

    Article  CAS  Google Scholar 

  34. Djordjevic L, Primorac M, Stupar M. In vitro release of diclofenac diethylamine from caprylocaproyl macrogolglycerides based microemulsions. Int J Pharm. 2005;296(1–2):73–9.

    Article  CAS  Google Scholar 

  35. El Maghraby GM. Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: effects of cosurfactants. Int J Pharm. 2008;355(1–2):285–92.

    Article  Google Scholar 

  36. Guy RH, Hadgraft J. Physicochemical aspects of percutaneous penetration and its enhancement. Pharm Res. 1988;5(12):753–8.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by NIH grant R35GM124551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole K. Brogden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelchen, M.N., Brogden, N.K. In Vitro Skin Retention and Drug Permeation through Intact and Microneedle Pretreated Skin after Application of Propranolol Loaded Microemulsions. Pharm Res 35, 228 (2018). https://doi.org/10.1007/s11095-018-2495-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2495-1

KEY WORDS

Navigation