Skip to main content

Advertisement

Log in

Recent Advances in Polymeric Implants

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Implantable drug delivery systems, such as drug pumps and polymeric drug depots, have emerged as means of providing predetermined drug release profiles at the desired site of action. While initial implants aimed at providing an enduring drug supply, developments in polymer chemistry and pharmaceutical technology and the growing need for refined drug delivery patterns have prompted the design of sophisticated drug delivery implants such as on-demand drug-eluting implants and personalized 3D printed implants. The types of cargo loaded into these implants range from small drug molecules to hormones and even therapeutic cells. This review will shed light upon recent advances in materials and composites used for polymeric implant fabrication, highlight select approaches employed in polymeric implant fabrication, feature medical applications where polymeric implants have a significant impact, and report recent advances made in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang L, Huang K, Zhong C, Wang L, Lu Y. Fabrication and modification of implantable optrode arrays for in vivo optogenetic applications. Biophysics Rep. 2018;4(2):82–93.

    Article  CAS  Google Scholar 

  2. Flexner C, Thomas DL, Swindells S. Creating demand for long-acting formulations for the treatment and prevention of HIV, tuberculosis, and viral hepatitis. Curr Opin HIV AIDS. 2019;14(1):13–20.

    Article  PubMed  Google Scholar 

  3. Ravivarapu HB, Moyer KL, Dunn RL. Sustained activity and release of leuprolide acetate from an in situ forming polymeric implant. AAPS PharmSciTech. 2000;1(1):E1.

    CAS  PubMed  Google Scholar 

  4. Southard GL, Dunn RL, Garrett S. The drug delivery and biomaterial attributes of the ATRIGEL technology in the treatment of periodontal disease. Expert Opin Investig Drugs. 1998;7(9):1483–91.

    Article  CAS  PubMed  Google Scholar 

  5. Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group Lancet. 1995;345(8956):1008–12.

    CAS  PubMed  Google Scholar 

  6. Perry J, Chambers A, Spithoff K, Laperriere N. Gliadel wafers in the treatment of malignant glioma: a systematic review. Curr Oncol. 2007;14(5):189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ashby LS, Smith KA, Stea B. Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review. World J Surg Oncol. 2016;14(1):225.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Palla S, Biswas J, Nagesha CK. Efficacy of Ozurdex implant in treatment of noninfectious intermediate uveitis. Indian J Ophthalmol. 2015;63(10):767–70.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Khurana RN, Porco TC. Efficacy and safety of dexamethasone intravitreal implant for persistent uveitic cystoid macular edema. Retina. 2015;35(8):1640–6.

    Article  CAS  PubMed  Google Scholar 

  10. Sella R, Oray M, Friling R, Umar L, Tugal-Tutkun I, Kramer M. Dexamethasone intravitreal implant (Ozurdex(R)) for pediatric uveitis. Graefes Arch Clin Exp Ophthalmol. 2015;253(10):1777–82.

    Article  CAS  PubMed  Google Scholar 

  11. Tomkins-Netzer O, Taylor SR, Bar A, Lula A, Yaganti S, Talat L, et al. Treatment with repeat dexamethasone implants results in long-term disease control in eyes with noninfectious uveitis. Ophthalmology. 2014;121(8):1649–54.

    Article  PubMed  Google Scholar 

  12. Haghjou N, Soheilian M, Abdekhodaie MJ. Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthalmic Vis Res. 2011;6(4):317–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin S, Chao PY, Chien YW, Sayani S, Kuma S, Mason M, et al. In vitro and in vivo evaluations of biodegradable implants for hormone replacement therapy: effect of system design and PK-PD relationship. AAPS PharmSciTech. 2001;2(3):E16.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Z, Zeng T-Y, Xia L, Hong C-Y, Wu D-C, You Y-Z. Synthesis of polymers with on-demand sequence structures via dually switchable and interconvertible polymerizations. Nat Commun. 2018;9(1):2577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kumar AM, Suresh B, Das S, Obot IB, Adesina AY, Ramakrishna S. Promising bio-composites of polypyrrole and chitosan: surface protective and in vitro biocompatibility performance on 316L SS implants. Carbohydr Polym. 2017;173:121–30.

    Article  CAS  PubMed  Google Scholar 

  16. Manna S, Donnell AM, Kaval N, Al-Rjoub MF, Augsburger JJ, Banerjee RK. Improved design and characterization of PLGA/PLA-coated chitosan based micro-implants for controlled release of hydrophilic drugs. Int J Pharm. 2018;547(1–2):122–32.

    Article  CAS  PubMed  Google Scholar 

  17. Manna S, Banerjee RK, Augsburger JJ, Al-Rjoub MF, Donnell A, Correa ZM. Biodegradable chitosan and polylactic acid-based intraocular micro-implant for sustained release of methotrexate into vitreous: analysis of pharmacokinetics and toxicity in rabbit eyes. Graefes Arch Clin Exp Ophthalmol. 2015;253(8):1297–305.

    Article  CAS  PubMed  Google Scholar 

  18. Manna S, Augsburger JJ, Correa ZM, Landero JA, Banerjee RK. Development of chitosan and polylactic acid based methotrexate intravitreal micro-implants to treat primary intraocular lymphoma: an in vitro study. J Biomech Eng. 2014;136(2):021018–5.

    Article  PubMed  Google Scholar 

  19. Argarate N, Olalde B, Atorrasagasti G, Valero J, Carolina Cifuentes S, Benavente R, et al. Biodegradable bi-layered coating on polymeric orthopaedic implants for controlled release of drugs. Mater Lett. 2014;132:193–5.

    Article  CAS  Google Scholar 

  20. Aqil F, Jeyabalan J, Kausar H, Bansal SS, Sharma RJ, Singh IP, et al. Multi-layer polymeric implants for sustained release of chemopreventives. Cancer Lett. 2012;326(1):33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nasrin R, Biswas S, Rashid TU, Afrin S, Jahan RA, Haque P, et al. Preparation of chitin-PLA laminated composite for implantable application. Bioactive materials. 2017;2(4):199–207.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Saber-Samandari S, Saber-Samandari S. Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability. Mater Sci Eng C. 2017;75:721–32.

    Article  CAS  Google Scholar 

  23. Rijal NP, Adhikari U, Khanal S, Pai D, Sankar J, Bhattarai N. Magnesium oxide-poly(ε-caprolactone)-chitosan-based composite nanofiber for tissue engineering applications. Mater Sci Eng B. 2018;228:18–27.

    Article  CAS  Google Scholar 

  24. Ma B, Wang X, Wu C, Chang J. Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regenerative Biomaterials. 2014;1(1):81–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Suryavanshi A, Khanna K, Sindhu KR, Bellare J, Srivastava R. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in-vitro and in-vivo evaluation. Biomed Mater (Bristol, England). 2017;12(5):055011.

    Article  Google Scholar 

  26. Niemczyk B, Sajkiewicz P, Kolbuk D. Injectable hydrogels as novel materials for central nervous system regeneration. J Neural Eng. 2018;15(5):051002.

    Article  CAS  PubMed  Google Scholar 

  27. Jeznach O, Kolbuk D, Sajkiewicz P. Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. J Biomed Mater Res A. 2018;106(10):2762–76.

    Article  CAS  PubMed  Google Scholar 

  28. Leelakanok N, Geary SM, Salem AK. Antitumor efficacy and toxicity of 5-fluorouracil-loaded poly (lactide co-glycolide) pellets. J Pharm Sci. 2018;107(2):690–7.

    Article  CAS  PubMed  Google Scholar 

  29. Kempe S, Mader K. In situ forming implants - an attractive formulation principle for parenteral depot formulations. J Control Release. 2012;161(2):668–79.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed TA, Ibrahim HM, Samy AM, Kaseem A, Nutan MT, Hussain MD. Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: in vitro release, pharmacokinetics, and stability. AAPS PharmSciTech. 2014;15(3):772–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bode C, Kranz H, Siepmann F, Siepmann J. In-situ forming PLGA implants for intraocular dexamethasone delivery. Int J Pharm. 2018;548:337–48.

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Shi X. In vitro and in vivo evaluation of lidocaine hydrochloride-loaded injectable poly (lactic-co-glycolic acid) implants. Curr Drug Deliv. 2018;15(10):1411–6.

    Article  CAS  PubMed  Google Scholar 

  33. Shamma RN, Elkasabgy NA, Mahmoud AA, Gawdat SI, Kataia MM, Abdel Hamid MA. Design of novel injectable in-situ forming scaffolds for non-surgical treatment of periapical lesions: in-vitro and in-vivo evaluation. Int J Pharm. 2017;521(1–2):306–17.

    Article  CAS  PubMed  Google Scholar 

  34. Kovarova M, Benhabbour SR, Massud I, Spagnuolo RA, Skinner B, Baker CE, et al. Ultra-long-acting removable drug delivery system for HIV treatment and prevention. Nat Commun. 2018;9(1):4156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kar M, Vernon Shih YR, Velez DO, Cabrales P, Varghese S. Poly (ethylene glycol) hydrogels with cell cleavable groups for autonomous cell delivery. Biomaterials. 2016;77:186–97.

    Article  CAS  PubMed  Google Scholar 

  36. Schaal JL, Li X, Mastria E, Bhattacharyya J, Zalutsky MR, Chilkoti A, et al. Injectable polypeptide micelles that form radiation crosslinked hydrogels in situ for intratumoral radiotherapy. J Control Release. 2016;228:58–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi L, Ding P, Wang Y, Zhang Y, Ossipov D, Hilborn J. Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: design, fabrication, and biomedical applications. Macromol Rapid Commun. 2019:e1800837.

  38. Liu Y, Hsu SH. Synthesis and biomedical applications of self-healing hydrogels. Front Chem. 2018;6:449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang W, Narain R, Zeng H. Rational design of self-healing tough hydrogels: a mini review. Front Chem. 2018;6:497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Q, Liu C, Wen J, Wu Y, Shan Y, Liao J. The design, mechanism and biomedical application of self-healing hydrogels. Chin Chem Lett. 2017;28(9):1857–74.

    Article  CAS  Google Scholar 

  41. Taylor DL, In Het Panhuis M. Self-healing hydrogels. Adv Mater. 2016;28(41):9060–93.

    Article  CAS  PubMed  Google Scholar 

  42. Cho IS, Ooya T. An injectable and self-healing hydrogel for spatiotemporal protein release via fragmentation after passing through needles. J Biomater Sci Polym Ed. 2018;29(2):145–59.

    Article  CAS  PubMed  Google Scholar 

  43. Seo BB, Koh JT, Song SC. Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect. Biomaterials. 2017;122:91–104.

    Article  CAS  PubMed  Google Scholar 

  44. Qian C, Zhang T, Gravesande J, Baysah C, Song X, Xing J. Injectable and self-healing polysaccharide-based hydrogel for pH-responsive drug release. Int J Biol Macromol. 2019;123:140–8.

    Article  CAS  PubMed  Google Scholar 

  45. Liu P, Guo B, Wang S, Ding J, Zhou W. A thermo-responsive and self-healing liposome-in-hydrogel system as an antitubercular drug carrier for localized bone tuberculosis therapy. Int J Pharm. 2019;558:101–9.

    Article  CAS  PubMed  Google Scholar 

  46. Peterson GI, Dobrynin AV, Becker ML. Biodegradable shape memory polymers in medicine. Adv Healthcare Mater. 2017;6(21).

    Article  CAS  Google Scholar 

  47. Tuncaboylu DC, Friess F, Wischke C, Lendlein A. A multifunctional multimaterial system for on-demand protein release. J Control Release. 2018;284:240–7.

    Article  CAS  PubMed  Google Scholar 

  48. Shagan A, Croitoru-Sadger T, Corem-Salkmon E, Mizrahi B. Near-infrared light induced phase transition of biodegradable composites for on-demand healing and drug release. ACS Appl Mater Interfaces. 2018;10(4):4131–9.

    Article  CAS  PubMed  Google Scholar 

  49. Rovers SA, Hoogenboom RWE, Kemmere MF, Keurentjes JTF. Repetitive on-demand drug release by magnetic heating of iron oxide containing polymeric implants. Soft Matter. 2012:2012.

  50. Rovers SA, Kemmere MF, Keurentjes JTF, Hoogenboom R. Repetitive on-demand drug release from polymeric matrices containing a macroscopic spherical iron core. J Mater Sci Mater Med. 2017;28(10):163.

    Article  PubMed  CAS  Google Scholar 

  51. Do AV, Geary SM, Seol D, Tobias P, Carlsen D, Leelakanok N, et al. Combining ultrasound and intratumoral administration of doxorubicin-loaded microspheres to enhance tumor cell killing. Int J Pharm. 2018;539(1–2):139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ordeig O, Chin SY, Kim S, Chitnis PV, Sia SK. An implantable compound-releasing capsule triggered on demand by ultrasound. Sci Rep. 2016;6:22803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Servant A, Leon V, Jasim D, Methven L, Limousin P, Fernandez-Pacheco EV, et al. Graphene-based electroresponsive scaffolds as polymeric implants for on-demand drug delivery. Adv Healthc Mater. 2014;3(8):1334–43.

    Article  CAS  PubMed  Google Scholar 

  54. Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173:75–88.

    Article  CAS  PubMed  Google Scholar 

  55. Daniyal M, Liu B. Wang W. Curr Med Chem: Comprehensive review on graphene oxide for use in drug delivery system; 2019.

    Google Scholar 

  56. Gu Z, Zhu S, Yan L, Zhao F, Zhao Y. Graphene-based smart platforms for combined cancer therapy. Adv Mater. 2019;31(9):e1800662.

    Article  PubMed  CAS  Google Scholar 

  57. Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv. 2018.

  58. Liang J, Liu B. ROS-responsive drug delivery systems. Bioeng Transl Med. 2016;1(3):239–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang D, Qian H, Qiao H, Chen W, Feijen J, Zhong Z. Bioresponsive functional nanogels as an emerging platform for cancer therapy. Expert Opin Drug Deliv. 2018;15(7):703–16.

    Article  CAS  PubMed  Google Scholar 

  60. Cheng W, Gu L, Ren W, Liu Y. Stimuli-responsive polymers for anti-cancer drug delivery. Mater Sci Eng C. 2014;45:600–8.

    Article  CAS  Google Scholar 

  61. Wang X, Cai X, Hu J, Shao N, Wang F, Zhang Q, et al. Glutathione-triggered “off–on” release of anticancer drugs from dendrimer-encapsulated gold nanoparticles. J Am Chem Soc. 2013;135(26):9805–10.

    Article  CAS  PubMed  Google Scholar 

  62. Gu D, Tan S, O’Connor AJ, Qiao GG. On-demand cascade release of hydrophobic chemotherapeutics from a multicomponent hydrogel system. ACS Biomater Sci Eng. 2018;4(5):1696–707.

    CAS  PubMed  Google Scholar 

  63. Farb A, Heller PF, Shroff S, Cheng L, Kolodgie FD, Carter AJ, et al. Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation. 2001;104(4):473–9.

    Article  CAS  PubMed  Google Scholar 

  64. Eberhart RC, Su SH, Nguyen KT, Zilberman M, Tang L, Nelson KD, et al. Bioresorbable polymeric stents: current status and future promise. J Biomater Sci Polym Ed. 2003;14(4):299–312.

    Article  CAS  PubMed  Google Scholar 

  65. Gil RJ, Bil J, Legutko J, Pawłowski T, Gil KE, Dudek D, et al. Comparative assessment of three drug eluting stents with different platforms but with the same biodegradable polymer and the drug based on quantitative coronary angiography and optical coherence tomography at 12-month follow-up. Int J Cardiovasc Imaging. 2018;34(3):353–65.

    Article  PubMed  Google Scholar 

  66. Han C-M, Park K-S, Joung Y. Recent alternative approaches of vascular drug-eluting stents. J Pharm Investig. 2018;48(2):153–65.

    Article  CAS  Google Scholar 

  67. Barros AA, Browne S, Oliveira C, Lima E, Duarte ARC, Healy KE, et al. Drug-eluting biodegradable ureteral stent: new approach for urothelial tumors of upper urinary tract cancer. Int J Pharm. 2016;513(1):227–37.

    Article  CAS  PubMed  Google Scholar 

  68. Barros AA, Oliveira C, Lima E, Duarte ARC, Reis RL. Gelatin-based biodegradable ureteral stents with enhanced mechanical properties. Appl Mater Today. 2016;5:9–18.

    Article  Google Scholar 

  69. Liu S-J, Chiang F-J, Hsiao C-Y, Kau Y-C, Liu K-S. Fabrication of balloon-expandable self-lock drug-eluting polycaprolactone stents using micro-injection molding and spray coating techniques. Ann Biomed Eng. 2010;38(10):3185–94.

    Article  PubMed  Google Scholar 

  70. Lim WS, Chen K, Chong TW, Xiong GM, Birch WR, Pan J, et al. A bilayer swellable drug-eluting ureteric stent: localized drug delivery to treat urothelial diseases. Biomaterials. 2018;165:25–38.

    Article  CAS  PubMed  Google Scholar 

  71. Smyth H. 3D printing technologies for drug delivery: a review AU – Prasad, Leena Kumari. Drug Dev Ind Pharm. 2016;42(7):1019–31.

    Article  PubMed  CAS  Google Scholar 

  72. Kotta S, Nair A, Alsabeelah N. 3D printing technology in drug delivery: recent progress and application. Curr Pharm Des. 2018.

  73. Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.

    Article  CAS  PubMed  Google Scholar 

  74. Osouli-Bostanabad K, Adibkia K. Made-on-demand, complex and personalized 3D-printed drug products. BioImpacts. 2018;8(2):77–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Do AV, Worthington KS, Tucker BA, Salem AK. Controlled drug delivery from 3D printed two-photon polymerized poly (ethylene glycol) dimethacrylate devices. Int J Pharm. 2018;552(1–2):217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Do AV, Akkouch A, Green B, Ozbolat I, Debabneh A, Geary S, et al. Controlled and sequential delivery of fluorophores from 3D printed alginate-PLGA tubes. Ann Biomed Eng. 2017;45(1):297–305.

    Article  PubMed  Google Scholar 

  77. Yang N, Chen H, Han H, Shen Y, Gu S, He Y, et al. 3D printing and coating to fabricate a hollow bullet-shaped implant with porous surface for controlled cytoxan release. Int J Pharm. 2018;552(1–2):91–8.

    Article  CAS  PubMed  Google Scholar 

  78. Tappa K, Jammalamadaka U, Ballard DH, Bruno T, Israel MR, Vemula H, et al. Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study. PLoS One. 2017;12(8):e0182929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Gao L, Xia L, Zhang R, Duan D, Liu X, Xu J, et al. Enhanced antitumor efficacy of poly(D,L-lactide-co-glycolide)-based methotrexate-loaded implants on sarcoma 180 tumor-bearing mice. Drug Des Devel Ther. 2017;11:3065–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Belz JE, Kumar R, Baldwin P, Ojo NC, Leal AS, Royce DB, et al. Sustained release talazoparib implants for localized treatment of BRCA1-deficient breast cancer. Theranostics. 2017;7(17):4340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xie Y-Q, Wei L, Tang L. Immunoengineering with biomaterials for enhanced cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2018;10(4):e1506.

    PubMed  Google Scholar 

  82. Yang Y, Du T, Zhang J, Kang T, Luo L, Tao J, et al. A 3D-engineered conformal implant releases dna nanocomplexs for eradicating the postsurgery residual glioblastoma. Adv Sci. 2017;4(8):1600491.

    Article  CAS  Google Scholar 

  83. Stephan SB, Taber AM, Jileaeva I, Pegues EP, Sentman CL, Stephan MT. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat Biotechnol. 2015;33(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  84. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363–408.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Orciani M, Fini M, Di Primio R, Mattioli-Belmonte M. Biofabrication and bone tissue regeneration: cell source, approaches, and challenges. Front Bioeng Biotechnol. 2017;5:17.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A. Current concepts in scaffolding for bone tissue engineering. Arch Bone Joint Surg. 2018;6(2):90–9.

    PubMed  PubMed Central  Google Scholar 

  87. Khorsand B, Elangovan S, Hong L, Dewerth A, Kormann MS, Salem AK. A comparative study of the bone regenerative effect of chemically modified RNA encoding BMP-2 or BMP-9. AAPS J. 2017;19(2):438–46.

    Article  CAS  PubMed  Google Scholar 

  88. Elangovan S, Khorsand B, Do AV, Hong L, Dewerth A, Kormann M, et al. Chemically modified RNA activated matrices enhance bone regeneration. J Control Release. 2015;218:22–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cheng ZA, Alba-Perez A, Gonzalez-Garcia C, Donnelly H, Llopis-Hernandez V, Jayawarna V, et al. Nanoscale coatings for ultralow dose BMP-2-driven regeneration of critical-sized bone defects. Advanced Science. 2019;6(2):1800361.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawther Khalid Ahmed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, K.K., Tamer, M.A., Ghareeb, M.M. et al. Recent Advances in Polymeric Implants. AAPS PharmSciTech 20, 300 (2019). https://doi.org/10.1208/s12249-019-1510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1510-0

KEY WORDS

Navigation