Effects of Temperature and Humidity on the Skin Permeation of Hydrophilic and Hydrophobic Drugs


The humidity was a well-known method to hydrate the skin; however, the published data were varied, and systemic experiments in the previous papers were few. Therefore, the in vitro permeation of excised porcine ear skin by drugs with different polarities [aminopyrine (AMP), antipyrine (ANP), methylparaben (MP), and ibuprofen (IP)] was analyzed under a constant skin surface temperature with different temperatures and humidities to reveal the effects of temperature and humidity on the skin permeation enhancement effects. Applied formulations were prepared by mixing the drug and a hydrophilic vehicle containing glycerin. The disposition-distance profiles of water and the humectant glycerin in the stratum corneum were also investigated using confocal Raman microscopy. High absolute humidity (AH) significantly contributed to the high skin penetration of the hydrophilic penetrants AMP, ANP, and MP but not the hydrophobic penetrant IP. An increase in the partition parameter and a decrease in the diffusivity parameter occurred with an increase in AH, independent of drug polarity. Moreover, we found that dew condensation induced by high AH on temperature-controlled skin surface may effectively increase water content and may provide higher glycerin distribution in the skin barrier, the stratum corneum. Increasing the amount of water and hydrophilic vehicles such as glycerin in the stratum corneum may enhance the permeation of hydrophilic penetrants AMP, ANP, and MP. These data suggested a dew condensation on the skin surface induced by high AH at a constant skin surface temperature would be important to enhance hydrophilic penetrants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Barbero AM, Frasch HF. Effect of stratum corneum heterogeneity, anisotropy, asymmetry and follicular pathway on transdermal penetration. How sensitive are transdermal transport predictions by microscopic stratum corneum models to geometric and transport parameter input? J Control Release. 2017;260(1873–4995 (Electronic):234–46.

    CAS  Article  Google Scholar 

  2. 2.

    Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Release. 1994;30(1):1–15.

    CAS  Article  Google Scholar 

  3. 3.

    Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447(1–2):12–21.

    CAS  Article  Google Scholar 

  4. 4.

    Guy RH, Delgado-Charro Mb Fau - Kalia YN, Kalia YN. Iontophoretic transport across the skin. Skin Pharmacol Appl Ski Physiol. 2001;14 Suppl1(1422–2868 (Print)):35–40.

    Article  Google Scholar 

  5. 5.

    Mitragotri S. Effect of therapeutic ultrasound on partition and diffusion coefficients in human stratum corneum. J Control Release. 2001;71(1):23–9.

    CAS  Article  Google Scholar 

  6. 6.

    van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. 2012;161(2):645–55.

    Article  Google Scholar 

  7. 7.

    Shahzad Y, Louw R, Gerber M, Du Plessis J. Breaching the skin barrier through temperature modulations. J Control Release. 2015;202:1–13.

    CAS  Article  Google Scholar 

  8. 8.

    Lboutounne Y, Silva J, Pazart L, Bérard M, Muret P, Humbert P. Microclimate next to the skin: influence on percutaneous absorption of caffeine (ex-vivo study). Skin Res Technol. 2014;20(3):293–8.

    CAS  Article  Google Scholar 

  9. 9.

    Ishida M, Takeuchi H, Endo H, Yamaguchi J-I. Impact of humidity on in vitro human skin permeation experiments for predicting in vivo permeability. J Pharm Sci. 2015;104(12):4223–31.

    CAS  Article  Google Scholar 

  10. 10.

    Chang SK, Riviere JE. Percutaneous absorption of parathion in vitro in porcine skin: effects of dose, temperature, humidity, and perfusate composition on absorptive flux. Fundam Appl Toxicol. 1991;17(3):494–504.

    CAS  Article  Google Scholar 

  11. 11.

    Uchida T, Yakumaru M, Nishioka K, Higashi Y, Sano T, Todo H, et al. Evaluation of a silicone membrane as an alternative to human skin for determining skin permeation parameters of chemical compounds. Chem Pharm Bull. 2016;64(9):1338–46.

    CAS  Article  Google Scholar 

  12. 12.

    Hatanaka T, Inuma M, Sugibayashi K, Morimoto Y. Prediction of skin permeability of drugs: I: comparison with artificial membrane. Chem Pharm Bull. 1990;38(12):3452–9.

    CAS  Article  Google Scholar 

  13. 13.

    Celebi D, Guy RH, Edler KJ, Scott JL. Ibuprofen delivery into and through the skin from novel oxidized cellulose-based gels and conventional topical formulations. (1873–3476 (Electronic)).

  14. 14.

    Zhang J, Michniak-Kohn B. Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: ketoprofen, lidocaine, and caffeine. Int J Pharm. 2011;421(1):34–44.

    CAS  Article  Google Scholar 

  15. 15.

    Tetens O. Uber einige meteorologische Begriffe. Z Geophys. 1930;6:297–309.

    Google Scholar 

  16. 16.

    Flynn GL, Yalkowsky SH, Roseman TJ. Mass transport phenomena and models: theoretical concepts. J Pharm Sci. 1974;63(4):479–510.

    CAS  Article  Google Scholar 

  17. 17.

    Okamoto H, Hashida M, Sezaki H. Structure-activity relationship of 1-alkyl- or 1 -alkenylazacycloal kanone derivatives as percutaneous penetration enhancers. J Pharm Sci. 1988;77(5):418–24.

    CAS  Article  Google Scholar 

  18. 18.

    Albèr C, Brandner BD, Björklund S, Billsten P, Corkery RW, Engblom J. Effects of water gradients and use of urea on skin ultrastructure evaluated by confocal Raman microspectroscopy. Biochim Biophys Acta Biomembr. 2013;1828(11):2470–8.

    Article  Google Scholar 

  19. 19.

    Mateus R, Abdalghafor H, Oliveira G, Hadgraft J, Lane ME. A new paradigm in dermatopharmacokinetics—confocal Raman spectroscopy. Int J Pharm. 2013;444(1–2):106–8.

    CAS  Article  Google Scholar 

  20. 20.

    Fritsch WC, Stoughton RB. The effect of temperature and humidity on the penetration of C14 acetylsalicylic acid in excised human skin. J Investig Dermatol. 1963;41:307–11.

    CAS  PubMed  Google Scholar 

  21. 21.

    Idson B. Hydration and percutaneous absorption. Curr Probl Dermatol. 1978;7:132–41.

    CAS  PubMed  Google Scholar 

  22. 22.

    Clarys P, Clijsen R, Taeymans J, Barel AO. Hydration measurements of the stratum corneum: comparison between the capacitance method (digital version of the Corneometer CM 825®) and the impedance method (Skicon-200EX®). Skin Res Technol. 2012;18(3):316–23.

    Article  Google Scholar 

  23. 23.

    Golden GM, Guzek DB, Harris RR, McKie JE, Potts RO. Lipid thermotropic transitions in human stratum corneum. J Investig Dermatol. 1986;86(3):255–9.

    CAS  Article  Google Scholar 

  24. 24.

    Cornwell PA, Barry BW, Bouwstra JA, Gooris GS. Modes of action of terpene penetration enhancers in human skin; differential scanning calorimetry, small-angle X-ray diffraction and enhancer uptake studies. Int J Pharm. 1996;127(1):9–26.

    CAS  Article  Google Scholar 

  25. 25.

    Mitragotri S. Temperature dependence of skin permeability to hydrophilic and hydrophobic solutes. J Pharm Sci. 2007;96(0022–3549 (Print)):1832–9.

    CAS  Article  Google Scholar 

  26. 26.

    Bouwstra JA, de Graaff A, Gooris GS, Nijsse J, Wiechers JW, van Aelst AC. Water distribution and related morphology in human stratum corneum at different hydration levels. J Investig Dermatol. 2003;120(5):750–8.

    CAS  Article  Google Scholar 

  27. 27.

    Vyumvuhore R, Tfayli A, Duplan H, Delalleau A, Manfait M, Baiilet-Guffroy A. Effects of atmospheric relative humidity on stratum corneum structure at the molecular level: ex vivo Raman spectroscopy analysis. Analyst. 2013;138(14):4103–11.

    CAS  Article  Google Scholar 

  28. 28.

    Mitragotri S. Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J Control Release. 2003;86(1):69–92.

    CAS  Article  Google Scholar 

  29. 29.

    Mak VHW, Potts RO, Guy RH. Does hydration affect intercellular lipid organization in the stratum corneum? Pharm Res. 1991;8(8):1064–5.

    CAS  Article  Google Scholar 

  30. 30.

    Warner RR, Stone KJ, Boissy YL. Hydration disrupts human stratum corneum ultrastructure. J Investig Dermatol. 2003;120(2):275–84.

    CAS  Article  Google Scholar 

  31. 31.

    Björklund S, Engblom J, Thuresson K, Sparr E. Glycerol and urea can be used to increase skin permeability in reduced hydration conditions. Eur J Pharm Sci. 2013;50(5):638–45.

    Article  Google Scholar 

  32. 32.

    Yousef S, Mohammed Y, Namjoshi S, Grice J, Sakran W, Roberts M. Mechanistic evaluation of hydration effects on the human epidermal permeation of salicylate esters. AAPS J. 2017;19(1):180–90.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Tomohiko Sano or Kenji Sugibayashi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest Editor: S. Narasimha Murthy

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iikura, H., Uchida, K., Ogawa-Fuse, C. et al. Effects of Temperature and Humidity on the Skin Permeation of Hydrophilic and Hydrophobic Drugs. AAPS PharmSciTech 20, 264 (2019). https://doi.org/10.1208/s12249-019-1481-1

Download citation


  • temperature
  • absolute humidity
  • skin permeation enhancement
  • dew condensation
  • hydrophilic and hydrophobic penetrants