Skip to main content

Advertisement

Log in

A Thermoelectric Device for Coupling Fluid Temperature Regulation During Continuous Skin Sonoporation or Sonophoresis

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

During skin sonoporation and sonophoresis, time-consuming duty cycles or fluid replacement is often required to mitigate coupling fluid temperature increases. This study demonstrates an alternative method for temperature regulation: a circulating, thermoelectric system. Porcine skin samples were sonoporated continuously for 10 min at one of three intensities (23.8, 34.2, 39.4 W/m2). A caffeine solution was then applied to the skin and left to diffuse for 20 h. During sonoporation, the system was able to maintain the temperature between 10 and 16°C regardless of the intensity. No increase in transdermal transport was achieved with an intensity of 23.8 W/m2. Intensities of 34.2 and 39.4 W/m2 resulted in 3.5-fold (p < 0.05) and 3.7-fold (p < 0.05) increases in mean transport, relative to a control case with no ultrasound. From these results, it is concluded that a significant transport increase can be achieved with a system that circulates and cools the coupling fluid during ultrasound application. Relative to the previous methods of temperature control (duty cycles and fluid replacement), use of this circulation system will lead to significant time savings in future experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boucaud A, Montharu J, Machet L, Arbeille B, Machet MC, Patat F, et al. Clinical, histologic, and electron microscopy study of skin exposed to low-frequency ultrasound. Anat Rec. 2001;264(1):114–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ogura M, Paliwal S, Mitragotri S. Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev. 2008;60(10):1218–23.

    Article  CAS  PubMed  Google Scholar 

  4. Lee SE, Choi KJ, Menon GK, Kim HJ, Choi EH, Ahn SK, et al. Penetration pathways induced by low-frequency sonophoresis with physical and chemical enhancers: iron oxide nanoparticles versus lanthanum nitrates. J Invest Dermatol. 2010;130(4):1063–72.

    Article  CAS  PubMed  Google Scholar 

  5. Merino G, Kalia YN, Delgado-Charro MB, Potts RO, Guy RH. Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis. J Control Release. 2003;88(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  6. Polat BE, Deen WM, Langer R, Blankschtein D. A physical mechanism to explain the delivery of chemical penetration enhancers into skin during transdermal sonophoresis—insight into the observed synergism. J Control Release. 2012;158(2):250–60.

    Article  CAS  PubMed  Google Scholar 

  7. Mitragotri S, Blankschtein D, Langer R. Transdermal drug delivery using low-frequency sonophoresis. Pharm Res. 1996;13(3):411–20.

    Article  CAS  PubMed  Google Scholar 

  8. Morimoto Y, Mutoh M, Ueda H, Fang L, Hirayama K, Atobe M, et al. Elucidation of the transport pathway in hairless rat skin enhanced by low-frequency sonophoresis based on the solute–water transport relationship and confocal microscopy. J Control Release. 2005;103(3):587–97.

    Article  CAS  PubMed  Google Scholar 

  9. Mitragotri S, Kost J. Low-frequency sonophoresis: a review. Adv Drug Deliv Rev. 2004;56(5):589–601.

    Article  CAS  PubMed  Google Scholar 

  10. Zorec B, Jelenc J, Miklavčič D, Pavšelj N. Ultrasound and electric pulses for transdermal drug delivery enhancement: ex vivo assessment of methods with in vivo oriented experimental protocols. Int J Pharm. 2015;490(1–2):65–73.

    Article  CAS  PubMed  Google Scholar 

  11. Boucaud A, Garrigue MA, Machet L, Lc V, Patat F. Effect of sonication parameters on transdermal delivery of insulin to hairless rats. J Control Release. 2002;81(1):113–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kushner J, Blankschtein D, Langer R. Experimental demonstration of the existence of highly permeable localized transport regions in low-frequency sonophoresis. J Pharm Sci. 2004;93(11):2733–45.

    Article  CAS  PubMed  Google Scholar 

  13. Ueda H, Mutoh M, Seki T, Kobayashi D, Morimoto Y. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery. Biol Pharm Bull. 2009;32(5):916–20.

    Article  CAS  PubMed  Google Scholar 

  14. Rangsimawong W, Obata Y, Opanasopit P, Ngawhirunpat T, Takayama K. Enhancement of galantamine HBr skin permeation using sonophoresis and limonene-containing PEGylated liposomes. AAPS PharmSciTech. 2018;19(3):1093–104.

    Article  CAS  PubMed  Google Scholar 

  15. Terahara T, Mitragotri S, Kost J, Langer R. Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity. Int J Pharm. 2002a;235(1–2):35–42.

    Article  CAS  PubMed  Google Scholar 

  16. Herwadkar A, Sachdeva V, Taylor LF, Silver H, Banga AK. Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen. Int J Pharm. 2012;423(2):289–96.

    Article  CAS  PubMed  Google Scholar 

  17. Terahara T, Mitragotri S, Langer R. Porous resins as a cavitation enhancer for low-frequency sonophoresis. J Pharm Sci. 2002b;91(3):753–9.

    Article  CAS  PubMed  Google Scholar 

  18. Lindeque BGPMD, Shuler FDMDP, Bates CMMD. Skin temperatures generated following plaster splint application. Orthopedics (Online). 2013;36(5):364–7.

    Article  Google Scholar 

  19. Hao J, Ghosh P, Li SK, Newman B, Kasting GB, Raney SG. Heat effects on drug delivery across human skin. Expert Opin Drug Deliv. 2016;13(5):755–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moritz AR, Henriques FC. Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol. 1947;23(5):695–720.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Williamson C, Scholtz JR. Time-temperature relationships in thermal blister formation*. J Investig Dermatol. 1949;12(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  22. Tang H, Wang CCJ, Blankschtein D, Langer R. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport. Pharm Res. 2002a;19(8):1160–9.

    Article  CAS  PubMed  Google Scholar 

  23. Lavon I, Grossman N, Kost J. The nature of ultrasound–SLS synergism during enhanced transdermal transport. J Control Release. 2005;107(3):484–94.

    Article  CAS  PubMed  Google Scholar 

  24. Paliwal S, Menon GK, Mitragotri S. Low-frequency sonophoresis: ultrastructural basis for stratum corneum permeability assessed using quantum dots. J Invest Dermatol. 2006;126(5):1095–101.

    Article  CAS  PubMed  Google Scholar 

  25. Polat BE, Figueroa PL, Blankschtein D, Langer R. Transport pathways and enhancement mechanisms within localized and non-localized transport regions in skin treated with low-frequency sonophoresis and sodium lauryl sulfate. J Pharm Sci. 2011a;100(2):512–29.

    Article  CAS  PubMed  Google Scholar 

  26. Tezel A, Sens A, Tuchscherer J, Mitragotri S. Frequency dependence of sonophoresis. Pharm Res. 2001;18(12):1694–700.

    Article  CAS  PubMed  Google Scholar 

  27. Tezel A, Dokka S, Kelly S, Hardee GE, Mitragotri S. Topical delivery of anti-sense oligonucleotides using low-frequency sonophoresis. Pharm Res. 2004;21(12):2219–25.

    Article  CAS  PubMed  Google Scholar 

  28. Sarheed O, Abdul Rasool BK. Development of an optimised application protocol for sonophoretic transdermal delivery of a model hydrophilic drug. Open Biomed Eng J. 2011;5:14–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rich KT, Hoerig CL, Rao MB, Mast TD. Relations between acoustic cavitation and skin resistance during intermediate- and high-frequency sonophoresis. J Control Release. 2014;194:266–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han T, Das DB. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles. J Pharm Sci. 2013;102(10):3614–22.

    Article  CAS  PubMed  Google Scholar 

  31. Mitragotri S, Farrell J, Tang H, Terahara T, Kost J, Langer R. Determination of threshold energy dose for ultrasound-induced transdermal drug transport. J Control Release. 2000a;63(1–2):41–52.

    Article  CAS  PubMed  Google Scholar 

  32. Mitragotri S, Ray D, Farrell J, Tang H, Yu B, Kost J, et al. Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport. J Pharm Sci. 2000b;89(7):892–900.

    Article  CAS  PubMed  Google Scholar 

  33. Mutoh M, Ueda H, Nakamura Y, Hirayama K, Atobe M, Kobayashi D, et al. Characterization of transdermal solute transport induced by low-frequency ultrasound in the hairless rat skin. J Control Release. 2003;92(1–2):137–46.

    Article  CAS  PubMed  Google Scholar 

  34. Robertson J, Becker S. Influence of acoustic reflection on the inertial cavitation dose in a Franz diffusion cell. Ultrasound Med Biol. 2018;44(5):1100–9.

    Article  PubMed  Google Scholar 

  35. Dunne A, Crampton D, Egaña M. Effect of post-exercise hydrotherapy water temperature on subsequent exhaustive running performance in normothermic conditions. J Sci Med Sport. 2013;16(5):466–71.

    Article  PubMed  Google Scholar 

  36. Vichare V, Mujgond P, Tambe V, Dhole S. Simultaneous spectrophotometric determination of paracetamol and caffeine in tablet formulation. Int J PharmTech Res. 2010;2(4):2512–6.

    CAS  Google Scholar 

  37. Franeta J, Agbaba D, Eric S, Pavkov S, Aleksic M, Vladimirov S. HPLC assay of acetylsalicylic acid, paracetamol, caffeine and phenobarbital in tablets. Il Farmaco. 2002;57(9):709–13.

    Article  CAS  PubMed  Google Scholar 

  38. Rodrigues CI, Marta L, Maia R, Miranda M, Ribeirinho M, Máguas C. Application of solid-phase extraction to brewed coffee caffeine and organic acid determination by UV/HPLC. J Food Compos Anal. 2007;20(5):440–8.

    Article  CAS  Google Scholar 

  39. Fernandez P, Martin M, Gonzalez A, Pablos F. HPLC determination of catechins and caffeine in tea. Differentiation of green, black and instant teas. Analyst. 2000;125(3):421–5.

    Article  CAS  PubMed  Google Scholar 

  40. Hubert M, Vandervieren E. An adjusted boxplot for skewed distributions. Comput Stat Data Anal. 2008;52(12):5186–201.

    Article  Google Scholar 

  41. Krzywinski M, Altman N. Points of significance: visualizing samples with box plots: Nature Publishing Group; 2014.

  42. Spitzer M, Wildenhain J, Rappsilber J, Tyers M. BoxPlotR: a web tool for generation of box plots. Nat Methods. 2014;11(2):121–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153(2):307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tezel A, Sens A, Mitragotri S. Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy. J Pharm Sci. 2002;91(2):444–53.

    Article  CAS  PubMed  Google Scholar 

  45. Bader KB, Raymond JL, Mobley J, Church CC, Felipe Gaitan D. The effect of static pressure on the inertial cavitation threshold. J Acoust Soc Am. 2012;132(2):728–37.

    Article  PubMed  Google Scholar 

  46. Brabec K, Mornstein V. Detection of ultrasonic cavitation based on low-frequency analysis of acoustic signal. Cent Eur J Biol. 2007;2(2):213–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Robertson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robertson, J., Squire, M. & Becker, S. A Thermoelectric Device for Coupling Fluid Temperature Regulation During Continuous Skin Sonoporation or Sonophoresis. AAPS PharmSciTech 20, 147 (2019). https://doi.org/10.1208/s12249-019-1357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1357-4

KEY WORDS

Navigation