Skip to main content

Advertisement

Log in

Topical Delivery of Anti-sense Oligonucleotides Using Low-Frequency Sonophoresis

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

Topical delivery of oligonucleotides, though attractive for the treatment of skin disorders, is limited by the low permeability of the stratum corneum. Herein, we assessed the potential of low-frequency ultrasound (20 kHz, 2.4 W/cm2) in delivering therapeutically significant quantities of anti-sense oligonucleotides into skin.

Methods.

Dermal penetration of oligonucleotides penetration was quantified in vitro using radiolabeled oligonucleotides.

Results.

Estimated concentrations of oligonucleotides (ODNs) in the superficial layers of the skin ranged from ~0.5% to 5% of the donor concentration after a 10-min application of ultrasound and ODN. Microscopic evaluations using fluorescently labeled oligonucleotides and sulforhodamine B revealed heterogeneous penetration into the skin. Heterogenous penetration led to the formation of localized transport pathways (LTPs), which occupied about 5% of the total exposed skin area. Immuno-histochemical studies using an oligonucleotide that reacts specifically with an antibody also confirmed penetration of ODNs into LTPs. Histologic studies revealed that no gross structural changes were induced in the skin due to ultrasound application.

Conclusions.

These results show successful delivery of anti-sense oligonucleotides using low-frequency ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. G. Jarad, J. S. Simske, J. R. Sedor, and J. R. Schelling. Nucleic acid-based techniques for post-transcriptional regulation of molecular agents. Curr. Opin. Nephrol. Hpertens. 12:415–421 (2003).

    Google Scholar 

  2. 2. C. Wraight and P. White. Antisense oligonucleotides in cutaneous therapy. Pharmacol. Ther. 90:89–104 (2001).

    Google Scholar 

  3. 3. U. Mrowietz. The enigma of cyclosporin A treatment for psoriasis: systemic efficacy versus topical non-responsiveness. A review. Acta Derm. Venereol. 72:321–326 (1992).

    Google Scholar 

  4. 4. F. P. Schmook, A. Stutz, and J. Reinhardt. Penetration of Sand-immune (cyclosporin A) in rat skin in vitro. Effects of penetration enhancers and solvents. Skin Pharmacol. 6:116–124 (1993).

    Google Scholar 

  5. 5. J. Bouwstra, A. M. de Vries, A. G. Gooris, S. W. Bras, J. Brussee, and M. Ponec. Thermodynamic and Structural Aspects of the Skin Barrier. J. Control. Rel. 15:209–220 (1991).

    Google Scholar 

  6. 6. R. M. Brand and P. L. Iversen. Iontophoretic delivery of atelomeric oligonucleotide. Pharm. Res. 13:851–854 (1996).

    Google Scholar 

  7. 7. K. Li, A. H. Ghanem, C. L. Teng, G. E. Hardee, and W. I. Higuchi. Iontopohoretic transport of oligonucleotides across human epidermal membrane: a study of the Nernst-Planck model. J. Pharm. Sci. 90:915–931 (2001).

    Google Scholar 

  8. 8. R. M. Brand, T. L. Hannah, J. Norris, and P. L. Iversen. Transdermal delivery of antisense oligonucleotides can induce changes in gene expression in vivo. Antisense Nucleic Acid Drug Dev. 11:1–6 (2001).

    Google Scholar 

  9. 9. V. Regnier, N. De Morre, A. Jadoul, and V. Preat. Mechanisms of a phosphorothioate oligonucleotide delivery by skin electroporation. Int. J. Pharm. 184:147–156 (1999).

    Google Scholar 

  10. 10. T. E. Zewert, U. F. Pliquett, R. Langer, and J. C. Weaver. Transdermal transport of DNA antisense oligonucleotides by electroporation. Biochem. Biophys. Res. Commun. 212:286–292 (1995).

    Google Scholar 

  11. 11. R. C. Mehta, K. K. Strecker, S. R. Cooper, M. V. Templin, Y. J. Tsai, T. P. Condon, C. F. Bennett, and G. E. Hardee. Intercellular adhesion moleculae-1 supression in skin by topical delivery of anti-sense oligonucleotides. J. Invest. Dermatol. 115:805–812 (2000).

    Google Scholar 

  12. 12. W. Lin, M. Cromier, A. Samiee, A. Griffin, B. Johnson, C.-L. Teng, G. E. Hardee, and P. E. Daddona. Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm. Res. 18:1789–1793 (2001).

    Google Scholar 

  13. 13. S. Mitragotri, D. Edwards, D. Blankschtein, and R. Langer. A mechanistic study of ultrasonically enhanced transdermal drug delivery. J. Pharm. Sci. 84:697–706 (1995).

    Google Scholar 

  14. 14. S. Mitragotri and L. Le. Transdermal delivery of heparin and low-molecular weight heparin using low-frequency ultrasound. Pharm. Res. 18:1151–1156 (2000).

    Google Scholar 

  15. 15. B. P. Monia, J. F. Johnston, D. J. Ecker, M. A. Zounes, W. F. Lima, and S. M. Freier. Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides. J. Biol. Chem. 267:19954–19962 (1992).

    Google Scholar 

  16. 16. B. P. Monia, E. A. Lesnik, C. Gonzalez, W. F. Lima, D. McGee, C. J. Guinosso, A. M. Kawasaki, P. D. Cook, and S. M. Freier. Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268:14514–14522 (1993).

    Google Scholar 

  17. 17. A. Tezel, A. Sens, J. Tuchscherer, and S. Mitragotri. Frequency dependence of sonophoresis. Pharm. Res. 18:1694–1700 (2001).

    Google Scholar 

  18. 18. N. P. Katz, D. E. Shapiro, T. E. Hermann, J. Kost, and L. Custer. Rapid onset of cutaneous anesthesia with EMLA cream after pretreatment with a new ultrasound emitting device. Anesth. Analg. 98:371–376 (2004).

    Google Scholar 

  19. 19. M. Butler, K. Stecker, and C. F. Bennet. Cellular distribution of phosphorothioate oligodeoxynucleotides in normal rodent tissue. Lab. Invest. 77:379–388 (1997).

    Google Scholar 

  20. 20. S. Mitragotri, D. Blankschtein, and R. Langer. Ultrasound-mediated transdermal protein delivery. Science 269:850–853 (1995).

    CAS  PubMed  Google Scholar 

  21. 21. A. Tezel, A. Sens, and S. Mitragotri. Description of transdermal transport of hydrophilic solutes during low-frequency sonophoresis based on a modified porous pathway model. J. Pharm. Sci. 92:381–393 (2003).

    Google Scholar 

  22. 22. W. Lin, M. Cormier, A. Samiee, A. Griffin, B. Johnson, C. L. Teng, G. E. Hardee, and P. E. Daddona. Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm. Res. 18:1789–1793 (2001).

    Google Scholar 

  23. 23. S. K. Li, A. H. Ghanem, C. L. Teng, G. E. Hardee, and W. I. Higuchi. Iontophoretic transport of oligonucleotides across human epidermal membrane: a study of the Nernst-Planck model. J. Pharm. Sci. 90:915–931 (2001).

    Google Scholar 

  24. 24. V. Regnier, N. De Morre, A. Jadoul, and V. Preat. Mechanisms of a phosphorothioate oligonucleotide delivery by skin electroporation. Int. J. Pharm. 184:147–156 (1999).

    Google Scholar 

  25. 25. A. Tezel, A. Sens, J. Tuchscherer, and S. Mitragotri. Frequency dependence of sonophoresis. Pharm. Res. 18:1694–1700 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Mitragotri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tezel, A., Dokka, S., Kelly, S. et al. Topical Delivery of Anti-sense Oligonucleotides Using Low-Frequency Sonophoresis. Pharm Res 21, 2219–2225 (2004). https://doi.org/10.1007/s11095-004-7674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-004-7674-6

Key words:

Navigation