Skip to main content

Advertisement

Log in

Nanoemulsion-Loaded Hydrogels for Topical Administration of Pentyl Gallate

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study is to describe the development of nanoemulsion-loaded hydrogels to deliver pentyl gallate (PG), a gallic acid n-alkyl ester, through the skin. PG is an antioxidant agent; however, it seems to be a promising agent for herpis labialis treatment. Aristoflex AVC® and chitosan were used as gelling agents for nanoemulsion thickening. The developed formulations presented suitable PG content (94.4–100.3% w/w), nanometric droplet sizes (162–297 nm), high zeta potentials, and a non-Newtonian pseudoplastic behavior. Both vehicles neither enhanced PG penetration nor delayed its release from the nanoemulsion. Formulations remained physically stable at 8°C during 3 months of storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gunckel S, Santander P, Cordano G, Ferreira J, Munoz S, Nunez-Vergara LJ, et al. Antioxidant activity of gallates: an electrochemical study in aqueous media. Chem Biol Interact. 1998;114:45–59.

    Article  PubMed  CAS  Google Scholar 

  2. Kasture V, Katti SA, Mahajan D, Wagh R, Mohan M, Kasture S. Antioxidant and antiparkinson activity of gallic acid derivatives. Pharmacologyonline. 2009;1:385–95.

  3. Frey C, Pavani M, Cordano G, Munoz S, Rivera E, Medina J, et al. Comparative cytotoxicity of alkyl gallates on mouse tumor cell lines and isolated rat hepatocytes. Comp Biochem Physiol A Mol Integr Physiol. 2007;146:520–7.

    Article  PubMed  CAS  Google Scholar 

  4. Morais MC, Luqman S, Kondratyuk TP, Petronio MS, Regasini LO, Silva DH, et al. Suppression of TNF-alpha induced NFkappaB activity by gallic acid and its semi-synthetic esters: possible role in cancer chemoprevention. Nat Prod Res. 2010;24:1758–65.

    Article  PubMed  CAS  Google Scholar 

  5. Savi LA, Leal PC, Vieira TO, Rosso R, Nunes RJ, Yunes RA, et al. Evaluation of anti-herpetic and antioxidant activities, and cytotoxic and genotoxic effects of synthetic alkyl-esters of gallic acid. Arzneimittelforschung. 2005;55:66–75.

    PubMed  CAS  Google Scholar 

  6. Kratz JM, Andrighetti-Frohner CR, Kolling DJ, Leal PC, Cirne-Santos CC, Yunes RA, et al. Anti-HSV-1 and anti-HIV-1 activity of gallic acid and pentyl gallate. Mem Inst Oswaldo Cruz. 2008;103:437–42.

    Article  PubMed  CAS  Google Scholar 

  7. Kratz JM, Andrighetti-Frohner CR, Leal PC, Nunes RJ, Yunes RA, Trybala E, et al. Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate. Biol Pharm Bull. 2008;31:903–7.

    Article  PubMed  CAS  Google Scholar 

  8. Shukla C, Friden P, Juluru R, Stagni G. In vivo quantification of acyclovir exposure in the dermis following iontophoresis of semisolid formulations. J Pharm Sci. 2009;98:917–25.

    Article  PubMed  CAS  Google Scholar 

  9. Padula C, Sartori F, Marra F, Santi P. The influence of iontophoresis on acyclovir transport and accumulation in rabbit ear skin. Pharm Res. 2005;22:1519–24.

    Article  PubMed  CAS  Google Scholar 

  10. Piret J, Boivin G. Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother. 2011;55:459–72.

    Article  PubMed  CAS  Google Scholar 

  11. Morfin F, Thouvenot D. Herpes simplex virus resistance to antiviral drugs. J Clin Virol. 2003;26:29–37.

    Article  PubMed  CAS  Google Scholar 

  12. Spruance SL, McKeough MB, Cardinal JR. Penetration of guinea pig skin by acyclovir in different vehicles and correlation with the efficacy of topical therapy of experimental cutaneous herpes simplex virus infection. Antimicrob Agents Chemother. 1984;25:10–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Parry GE, Dunn P, Shah VP, Pershing LK. Acyclovir bioavailability in human skin. J Invest Dermatol. 1992;98:856–63.

    Article  PubMed  CAS  Google Scholar 

  14. Cundy KC, Lynch G, Lee WA. Bioavailability and metabolism of cidofovir following topical administration to rabbits. Antivir Res. 1997;35:113–22.

    Article  PubMed  CAS  Google Scholar 

  15. Kelmann RG, Colombo M, De Araujo Lopes SC, Nunes RJ, Pistore M, Dall Agnol D, et al. Pentyl gallate nanoemulsions as potential topical treatment of herpes labialis. J Pharm Sci. 2016;105:2194–203.

    Article  PubMed  CAS  Google Scholar 

  16. Bouchemal K, Briancon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm. 2004;280:241–51.

    Article  PubMed  CAS  Google Scholar 

  17. Mou D, Chen H, Du D, Mao C, Wan J, Xu H, et al. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm. 2008;353:270–6.

    Article  PubMed  CAS  Google Scholar 

  18. Visalli RJ, Courtney RJ, Meyers C. Infection and replication of herpes simplex virus type 1 in an organotypic epithelial culture system. Virology. 1997;230:236–43.

    Article  PubMed  CAS  Google Scholar 

  19. Rahn E, Thier K, Petermann P, Knebel-Morsdorf D. Ex vivo infection of murine epidermis with herpes simplex virus type 1. J Vis Exp. 2015;24:53046.

    Google Scholar 

  20. Junyaprasert VB, Teeranachaideekul V, Souto EB, Boonme P, Muller RH. Q10-loaded NLC versus nanoemulsions: stability, rheology and in vitro skin permeation. Int J Pharm. 2009;377:207–14.

    Article  PubMed  CAS  Google Scholar 

  21. de Vargas BA, Bidone J, Oliveira LK, Koester LS, Bassani VL, Teixeira HF. Development of topical hydrogels containing genistein-loaded nanoemulsions. J Biomed Nanotechnol. 2012;8:330–6.

    Article  PubMed  CAS  Google Scholar 

  22. Sharma S, Kumar A, Sahni JK, Ali J, Baboota S. Nanoemulsion based hydrogel containing omega 3 fatty acids as a surrogate of betamethasone dipropionate for topical delivery. Adv Sci Lett. 2012;6:221–31.

    Article  CAS  Google Scholar 

  23. Lee S, Yaw Pung Y, Kuang Khor B, En Kong W, Ting Tan C, Siew Yong T. Lipid-based delivery system for topical phenytoin. J Appl Pharm Sci. 2016;6:14–20.

  24. Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, et al. Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci. 2017;106:1736–51.

    Article  PubMed  CAS  Google Scholar 

  25. Chellapa P, Mohamed AT, Keleb EI, Elmahgoubi A, Eid AM, Issa YS, et al. Nanoemulsion and nanoemulgel as a topical formulation. IOSR J Pharm. 2015;5:43–7.

  26. Kelmann RG, Kuminek G, Teixeira HF, Koester LS. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. Int J Pharm. 2007;342:231–9.

    Article  PubMed  CAS  Google Scholar 

  27. Kelmann R, Dias DO, Nunes R, Teixeira H, Bassani V, Simões C, et al. A simple HPLC method for the determination of pentyl gallate and identification of an alkaline degradant. Lat Am J Pharm. 2012;31:918–22.

  28. Rajinikanth PS, Chellian J. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil. Int J Nanomedicine. 2016;11:5067–77. https://doi.org/10.2147/ijn.s117511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Roland I, Piel G, Delattre L, Evrard B. Systematic characterization of oil-in-water emulsions for formulation design. Int J Pharm. 2003;263:85–94.

    Article  PubMed  CAS  Google Scholar 

  30. Chen H, Chang X, Weng T, Zhao X, Gao Z, Yang Y, et al. A study of microemulsion systems for transdermal delivery of triptolide. J Control Release. 2004;98:427–36.

    Article  PubMed  CAS  Google Scholar 

  31. Sonneville-Aubrun O, Simonnet JT, L'Alloret F. Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interf Sci. 2004;109:145–9.

    Article  CAS  Google Scholar 

  32. Benita S, Levy MY. Submicron emulsions as colloidal drug carriers for intravenous administration: comprehensive physicochemical characterization. J Pharm Sci. 1993;82:1069–79.

    Article  PubMed  CAS  Google Scholar 

  33. Rydhag L, Wilton I. The function of phospholipids of soybean lecithin in emulsions. J Am Oil Chem Soc. 1981;58:830–7. https://doi.org/10.1007/bf02665591.

    Article  CAS  Google Scholar 

  34. Peppas NA, Khare AR. Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev. 1993;11:1–35. https://doi.org/10.1016/0169-409X(93)90025-Y.

    Article  CAS  Google Scholar 

  35. Mark H. Encyclopedia of Polymer Science and Technology, 12 Volume Set. Hoboken: Wiley; 2005.

    Google Scholar 

  36. Kim JC, Lee MH, Rang MJ. Minoxidil-containing dosage forms: skin retention and after-rinsing hair-growth promotion. Drug Deliv. 2003;10:119–23.

    Article  PubMed  CAS  Google Scholar 

  37. Shah PP, Desai PR, Patel AR, Singh MS. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials. 2012;33:1607–17.

    Article  PubMed  CAS  Google Scholar 

  38. Senyigit T, Sonvico F, Barbieri S, Ozer O, Santi P, Colombo P. Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin. J Control Release. 2010;142:368–73.

    Article  PubMed  CAS  Google Scholar 

  39. Roberts GP, Barnes HA. New measurements of the flow-curves for Carbopol dispersions without slip artefacts. Rheol Acta. 2001;40:499–503. https://doi.org/10.1007/s003970100178.

    Article  CAS  Google Scholar 

  40. Cheung RC, Ng TB, Wong JH, Chan WY. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13:5156–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Levy MY, Schutze W, Fuhrer C, Benita S. Characterization of diazepam submicron emulsion interface: role of oleic acid. J Microencapsul. 1994;11:79–92.

    Article  PubMed  CAS  Google Scholar 

  42. Souto EB, Wissing SA, Barbosa CM, Müller RH. Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur J Pharm Biopharm. 2004;58:83–90. https://doi.org/10.1016/j.ejpb.2004.02.015.

    Article  PubMed  CAS  Google Scholar 

  43. Lippacher A, Muller RH, Mader K. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int J Pharm. 2001;214:9–12.

    Article  PubMed  CAS  Google Scholar 

  44. Barnes HA. Thixotropy—a review. J Non-Newtonian Fluid Mech. 1997;70:1–33. https://doi.org/10.1016/S0377-0257(97)00004-9.

    Article  CAS  Google Scholar 

  45. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100:5–28.

    Article  PubMed  CAS  Google Scholar 

  46. Jelvehgari M, Montazam H. Evaluation of mechanical and rheological properties of metronidazole gel as local delivery system. Arch Pharm Res. 2011;34:931–40.

    Article  PubMed  CAS  Google Scholar 

  47. Washington C, Davis S. Ageing effects in patenterai fat emulsions: the role of fatty acids. Int J Pharm. 1987;39:33–7.

    Article  CAS  Google Scholar 

  48. Grit M, de Smidt JH, Struijke A, Crommelin DJ. Hydrolysis of phosphatidylcholine in aqueous liposome dispersions. Int J Pharm. 1989;50:1–6.

    Article  CAS  Google Scholar 

  49. Taylor P. Ostwald ripening in emulsions: estimation of solution thermodynamics of the disperse phase. Adv Colloid Interf Sci. 2003;106:261–85.

    Article  CAS  Google Scholar 

  50. Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interf Sci. 2004;109:303–18.

    Article  CAS  Google Scholar 

  51. Taveira SF, Nomizo A, Lopez RF. Effect of the iontophoresis of a chitosan gel on doxorubicin skin penetration and cytotoxicity. J Control Release. 2009;134:35–40.

    Article  PubMed  CAS  Google Scholar 

  52. Özcan İ, Abacı Ö, Uztan AH, Aksu B, Boyacıoğlu H, Güneri T, et al. Enhanced topical delivery of terbinafine hydrochloride with chitosan hydrogels. AAPS PharmSciTech. 2009;10:1024–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their grateful acknowledgments to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES/Rede Nanobiotec (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letícia S. Koester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelmann, R.G., Colombo, M., Nunes, R.J. et al. Nanoemulsion-Loaded Hydrogels for Topical Administration of Pentyl Gallate. AAPS PharmSciTech 19, 2672–2678 (2018). https://doi.org/10.1208/s12249-018-1099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1099-8

KEY WORDS

Navigation