Skip to main content

Advertisement

Log in

Imidazole-Bearing Polymeric Micelles for Enhanced Cellular Uptake, Rapid Endosomal Escape, and On-demand Cargo Release

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The complex design of multifunctional nanomedicine is beneficial to overcome the multiple biological barriers of drug delivery, but it also presents additional hurdles to clinical translation (e.g., scaling-up and quality control). To address this dilemma, we employed a simple imidazole-bearing polymer micelle for enhanced cellular uptake, facilitated endosomal escape, and on-demand release of a model drug, SN-38. The micelles were crosslinked by the reversible imidazole/Zn2+ coordination with a drug loading of ca. 4% (w/w) and a diameter less than 200 nm. Under mimicked tumor microenvironment (pH 6.8), the surface charge of micelles reversed from negative to positive, leading to enhanced micelles uptake by model 4T1 cells. Such effect was verified by fluorescent labelling of micelles. Compared to imidazole-free nanocarriers, the charge-reversal micelles delivered significantly more SN-38 to 4T1 cells. Due to the proton sponge effect, imidazole-bearing micelles could rapidly escape from endosomes compared to the control micelles, as evidenced by the kinetic analysis of micelle/endosome co-localization. The coordination crosslinking also enabled the acid-triggered drug release. This work provides a “three birds with one stone” approach to achieve the multifunctionality of nanocarriers without complicated particle design, and opens new avenues of advancing nanomedicine translation via simple tailored nanocarriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. I
Fig. II
Fig. III
Fig. IV
Fig. V
Fig. VI
Fig. VII
Fig. VIII

Similar content being viewed by others

References

  1. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  PubMed  CAS  Google Scholar 

  2. Min Y, Caster JM, Eblan MJ, Wang AZ. Clinical translation of nanomedicine. Chem Rev. 2015;115:11147–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Estanqueiro M, Amaral MH, Conceicao J, Sousa Lobo JM. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces. 2015;126:631–48.

    Article  PubMed  CAS  Google Scholar 

  4. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cheng Z, A Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 2012; 338:903–910.

  6. Zhang Z, Yin L, Tu C, Song Z, Zhang Y, Xu Y, et al. Redox-responsive, core cross-linked polyester micelles. ACS Macro Lett. 2013;2:40–4.

    Article  PubMed  CAS  Google Scholar 

  7. Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13:813–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44:1029–38.

    Article  PubMed  CAS  Google Scholar 

  9. Cha R, Li J, Liu Y, Zhang Y, Xie Q, Zhang M. Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery. Colloids Surf B Biointerfaces. 2017;158:213–21.

    Article  PubMed  CAS  Google Scholar 

  10. Barenholz Y, Peer D. Liposomes and other assemblies as drugs and nano-drugs: from basic and translational research to the clinics. J Control Release. 2012;160:115–6.

    Article  PubMed  CAS  Google Scholar 

  11. Louage B, De Wever O, Hennink WE, De Geest BG. Developments and future clinical outlook of taxane nanomedicines. J Control Release. 2017;253:137–52.

    Article  PubMed  CAS  Google Scholar 

  12. Bauman JE, Wang JC. Imidazole complexes of nickel(II), copper(II), zinc(II), and silver(I). Inorg Chem. 1964;3:368–73.

    Article  CAS  Google Scholar 

  13. Yu C, Gao C, Lü S, Chen C, Yang J, Di X, et al. Facile preparation of pH-sensitive micelles self-assembled from amphiphilic chondroitin sulfate-histamine conjugate for triggered intracellular drug release. Colloids Surf B Biointerfaces. 2014;115:331–9.

    Article  PubMed  CAS  Google Scholar 

  14. Li X, Gao M, Xin K, Zhang L, Ding D, Kong D, et al. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. J Control Release. 2017;260:12–21.

    Article  PubMed  CAS  Google Scholar 

  15. Wu H, Zhu L, Torchilin VP. pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials. 2013;34:1213–22.

    Article  PubMed  CAS  Google Scholar 

  16. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995;92:7297–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding bio-physicochemical interactions at the nano-bio interface. Nat Mater. 2009;8:543–57.

    Article  PubMed  CAS  Google Scholar 

  18. Xin K, Li M, Lu D, Meng X, Deng J, Kong D, et al. Bioinspired coordination micelles integrating high stability, triggered cargo release, and magnetic resonance imaging. ACS Appl Mater Interfaces. 2017;9:80–91.

    Article  PubMed  CAS  Google Scholar 

  19. Cabral H, Nishiyama N, Kataoka K. Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res. 2011;44:999–1008.

    Article  PubMed  CAS  Google Scholar 

  20. Zhao CL, Winnik MA, Riess G, Croucher MD. Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir. 1990;6:514–6.

    Article  CAS  Google Scholar 

  21. Yang R, Zhang S, Kong D, Gao X, Zhao Y, Wang Z. Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin. Pharm Res. 2012;29:3512–25.

    Article  PubMed  CAS  Google Scholar 

  22. Huang Y, Tang Z, Zhang X, Yu H, Sun H, Pang X, et al. pH-triggered charge-reversal polypeptide nanoparticles for cisplatin delivery: preparation and in vitro evaluation. Biomacromolecules. 2013;14:2023–32.

    Article  PubMed  CAS  Google Scholar 

  23. Yue Y, Jin F, Deng R, Cai J, Dai Z, Lin MC, et al. Revisit complexation between DNA and polyethylenimine-effect of length of free polycationic chains on gene transfection. J Control Release. 2011;152:143–51.

    Article  PubMed  CAS  Google Scholar 

  24. Shi J, Schellinger JG, Johnson RN, Choi JL, Chou B, Anghel EL, et al. Influence of histidine incorporation on buffer capacity and gene transfection efficiency of HPMA-co-oligolysine brush polymers. Biomacromolecules. 2013;2013(14):1961–70.

    Article  CAS  Google Scholar 

  25. Tabushi I, Kuroda Y. Bis(histamino) cyclodextin-zn-imidazole complex as an artificial carbonic anhydrase. J Am Chem Soc. 1984;15:4580–4.

    Article  Google Scholar 

  26. Deng J, Wang K, Wang M, Yu P, Mao L. Mitochondria targeted nanoscale zeolitic imidazole framework-90 (ZIF-90) for ATP imaging in live cells. J Am Chem Soc. 2017;139:5877–82.

    Article  PubMed  CAS  Google Scholar 

  27. Anderson EB, Long TE. Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer. 2010;51:2447–54.

    Article  CAS  Google Scholar 

  28. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24:1–16.

    Article  PubMed  CAS  Google Scholar 

  29. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation cell. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  30. Han SS, Li ZY, Zhu JY, Han K, Zeng ZY, Hong W, et al. Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery. Small. 2015;11:2543–54.

    Article  PubMed  CAS  Google Scholar 

  31. Wang Z, Chen C, Liu R, Fan A, Kong D, Zhao Y. Two birds with one stone: dendrimer surface engineering enables tunable periphery hydrophobicity and rapid endosomal escape. Chem Commun. 2014;50:14025–8.

    Article  CAS  Google Scholar 

  32. Mok H, Park JW, Park TG. Enhanced intracellular delivery of quantum dot and adenovirus nanoparticles triggered by acidic pH via surface charge reversal. Bioconjug Chem. 2008;19:797–801.

    Article  PubMed  CAS  Google Scholar 

  33. Shen Y, Zhou Z, Sui M, Tang J, Xu P, Van Kirk EA, et al. Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery. Nanomedicine. 2010;5:1205–17.

    Article  PubMed  CAS  Google Scholar 

  34. Chen C, Tao R, Ding D, Kong D, Fan A, Wang Z, et al. Ratiometric co-delivery of multiple chemodrugs in a single nanocarrier. Eur J Pharm Sci. 2017;107:16–23.

    Article  PubMed  CAS  Google Scholar 

  35. Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011;151:220–8.

    Article  PubMed  CAS  Google Scholar 

  36. French AP, Mills S, Swarup R, Bennett MJ, Pridmore TP. Colocalization of fluorescent markers in confocal microscope images of plant cells. Nat Protoc. 2008;3:619–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the National Natural Science Foundation of China (21650110447), State Key Laboratory of Medicinal Chemical Biology (Nankai University) (2017030), and the innovation fund of Tianjin University (1706).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Wang or Yanjun Zhao.

Electronic supplementary material

ESM 1

(DOC 7292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., An, Y., Feng, S. et al. Imidazole-Bearing Polymeric Micelles for Enhanced Cellular Uptake, Rapid Endosomal Escape, and On-demand Cargo Release. AAPS PharmSciTech 19, 2610–2619 (2018). https://doi.org/10.1208/s12249-018-1092-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1092-2

KEY WORDS

Navigation