Skip to main content

Advertisement

Log in

Influence of Polymers on the Physical and Chemical Stability of Spray-dried Amorphous Solid Dispersion: Dipyridamole Degradation Induced by Enteric Polymers

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Amorphous solid dispersions (ASDs) are inherently unstable because of high internal energy. Evaluating physical and chemical stability during the process and storage is essential. Numerous researches have demonstrated how polymers influence the drug precipitation and physical stability of ASDs, while the influence of polymers on the chemical stability of ASDs is often overlooked. Therefore, this study aimed to investigate the effect of polymers on the physical and chemical stability of spray-dried ASDs using dipyridamole (DP) as a model drug. Proper polymers were selected by assessing their abilities to inhibit drug recrystallization in supersaturated solutions. HPMC E5, Soluplus®, HPMCP-55, and HPMCAS-LP were shown to be effective stabilizers. The optimized formulations were further stored at a high temperature (60 °C) and high humidity (40 °C, 75% RH) for 2 months, and their physical and chemical stability was evaluated using polarizing optical microscopy, FTIR, HPLC, and mass spectrometry (MS). In general, crystallization was observed in all samples, which indicated the physical instability under stressed storage conditions. Also, it was noted that the polymers in ASDs rather than physical mixtures, induced a dramatic drug degradation after being exposed to a high temperature (HPMCP-55 > 80% and HPMCAS-LP > 50%) and high humidity (HPMCP-55 > 40% and HPMCAS-LP > 10%). The MS analysis further confirmed the degradation products, which might be generated from the reaction between dipyridamole and phthalic anhydride decomposed from HPMCP-55 and HPMCAS-LP. Overall, the exposure of ASDs to stressed conditions resulted in recrystallization and even the chemical degradation induced by polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASD:

Amorphous solid dispersion

SDs:

Solid dispersions

DP:

Dipyridamole

PMs:

Physical mixtures

HPMC E5:

Hydroxypropyl methyl cellulose E5

PVP K30:

Poly vinyl pyrrolidne K30

PVPVA 64:

Polyvinylpyrrolidone vinyl acetate

Eudragit® L100:

Eudragit® L100-55

HPMCP:

Hydroxypropyl methyl-cellulose phthalate NF

HPMCAS:

Hydroxypropyl methylcellulose acetate succinate LF

References

  1. Ellenberger DJ, Miller DA, Kucera SU, Williams RO. Improved vemurafenib dissolution and pharmacokinetics as an amorphous solid dispersion produced by KinetiSol® processing. AAPS PharmSciTech. 2018; https://doi.org/10.1208/s12249-018-0988-1.

  2. Guan J, Liu Q, Zhang X, Zhang Y, Chokshi R, Wu H, et al. Alginate as a potential diphase solid dispersion carrier with enhanced drug dissolution and improved storage stability. Eur J Pharm Sci. 2018;114:346–55. https://doi.org/10.1016/j.ejps.2017.12.028.

    Article  PubMed  CAS  Google Scholar 

  3. Albadarin AB, Potter CB, Davis MT, Iqbal J, Korde S, Pagire S, et al. Development of stability-enhanced ternary solid dispersions via combinations of HPMCP and Soluplus® processed by hot melt extrusion. Int J Pharm. 2017;532(1):603–11. https://doi.org/10.1016/j.ijpharm.2017.09.035.

    Article  PubMed  CAS  Google Scholar 

  4. Xu S, Dai WG. Drug precipitation inhibitors in supersaturable formulations. Int J Pharm. 2013;453(1):36–43. https://doi.org/10.1016/j.ijpharm.2013.05.013.

    Article  PubMed  CAS  Google Scholar 

  5. Lee TWY, Boersen NA, Hui HW, Chow SF, Wan KY, Chow AHL. Delivery of poorly soluble compounds by amorphous solid dispersions. Curr Pharm Des. 2014;20(3):303–24.

    Article  PubMed  CAS  Google Scholar 

  6. Lu T, Sun Y, Ding D, Zhang Q, Fan R, He Z, et al. Study on enhanced dissolution of azilsartan-loaded solid dispersion, prepared by combining wet milling and spray-drying technologies. AAPS PharmSciTech. 2017;18(2):473–80. https://doi.org/10.1208/s12249-016-0531-1.

    Article  PubMed  CAS  Google Scholar 

  7. Chauhan H, Hui-Gu C, Atef E. Correlating the behavior of polymers in solution as precipitation inhibitor to its amorphous stabilization ability in solid dispersions. J Pharm Sci. 2013;102:1924–35. https://doi.org/10.1002/jps.23539.

    Article  PubMed  CAS  Google Scholar 

  8. Bley H, Fussnegger B, Bodmeier R. Characterization and stability of solid dispersions based on PEG/polymer blends. Int J Pharm. 2010;390(2):165–73. https://doi.org/10.1016/j.ijpharm.2010.01.039.

    Article  PubMed  CAS  Google Scholar 

  9. Li S, Pollock-Dove C, Dong LC, Chen J, Creasey AA, Dai WG. Enhanced bioavailability of a poorly water-soluble weakly basic compound using a combination approach of solubilization agents and precipitation inhibitors: a case study. Mol Pharm. 2012;9(5):1100–8. https://doi.org/10.1021/mp200352q.

    Article  PubMed  CAS  Google Scholar 

  10. Kim MS, Kim JS, Cho W, Cha KH, Park HJ, Park J, et al. Supersaturatable formulations for the enhanced oral absorption of sirolimus. Int J Pharm. 2013;445(1):108–16. https://doi.org/10.1016/j.ijpharm.2013.01.067.

    Article  PubMed  CAS  Google Scholar 

  11. Loftsson T, Brewster ME. Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci. 2012;101(9):3019–32. https://doi.org/10.1002/jps.23077.

    Article  PubMed  CAS  Google Scholar 

  12. Anderson BD. Predicting solubility/miscibility in amorphous dispersions: it is time to move beyond regular solution theories. J Pharm Sci. 2018;107(1):24–33. https://doi.org/10.1016/j.xphs.2017.09.030.

    Article  PubMed  CAS  Google Scholar 

  13. Lehmkemper K, Kyeremateng SO, Heinzerling O, Degenhardt M, Sadowski G. Impact of polymer type and relative humidity on the long-term physical stability of amorphous solid dispersions. Mol Pharm. 2017;14(12):4374–86. https://doi.org/10.1021/acs.molpharmaceut.7b00492.

    Article  PubMed  CAS  Google Scholar 

  14. Keratichewanun S, Yoshihashi Y, Sutanthavibul N, Terada K, Chatchawalsaisin J. An investigation of nifedipine miscibility in solid dispersions using Raman spectroscopy. Pharm Res. 2015;32(7):2458–73. https://doi.org/10.1007/s11095-015-1638-x.

    Article  PubMed  CAS  Google Scholar 

  15. Purohit HS, Ormes JD, Saboo S, Su Y, Lamm MS, Mann AKP, et al. Insights into nano- and micron-scale phase separation in amorphous solid dispersions using fluorescence-based techniques in combination with solid state nuclear magnetic resonance spectroscopy. Pharm Res. 2017;34(7):1364–77. https://doi.org/10.1007/s11095-017-2145-z.

    Article  PubMed  CAS  Google Scholar 

  16. Saboo S, Taylor LS. Water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) amorphous solid dispersions: insights with confocal fluorescence microscopy. Int J Pharm. 2017;529(1):654–66. https://doi.org/10.1016/j.ijpharm.2017.07.034.

    Article  PubMed  CAS  Google Scholar 

  17. Bochmann ES, Üstüner EE, Gryczke A, Wagner KG. Predicting melt rheology for hot-melt extrusion by means of a simple Tg-measurement. Eur J Pharm Biopharm. 2017;119:47–55. https://doi.org/10.1016/j.ejpb.2017.05.010.

    Article  PubMed  CAS  Google Scholar 

  18. Sun DD, Lee PI. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. J Control Release. 2015;211:85–93. https://doi.org/10.1016/j.jconrel.2015.06.004.

    Article  PubMed  CAS  Google Scholar 

  19. Hsieh YL, Ilevbare GA, Van Eerdenbrugh B, Box KJ, Sanchez-Felix MV, Taylor LS. pH-induced precipitation behavior of weakly basic compounds: determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties. Pharm Res. 2012;29(10):2738–53. https://doi.org/10.1007/s11095-012-0759-8.

    Article  PubMed  CAS  Google Scholar 

  20. Truong DH, Tran TH, Ramasamy T, Choi JY, Choi HG, Yong CS, et al. Preparation and characterization of solid dispersion using a novel amphiphilic copolymer to enhance dissolution and oral bioavailability of sorafenib. Powder Technol. 2015;283:260–5. https://doi.org/10.1016/j.powtec.2015.04.044.

    Article  CAS  Google Scholar 

  21. Patterson JE, James MB, Forster AH, Rades T. Melt extrusion and spray drying of carbamazepine and dipyridamole with polyvinylpyrrolidone/vinyl acetate copolymers. Drug Dev Ind Pharm. 2008;34(1):95–106. https://doi.org/10.1080/03639040701484627.

    Article  PubMed  CAS  Google Scholar 

  22. Miller DA, DiNunzio JC, Yang W, McGinity JW, Williams RO. Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral pH transition. Drug Dev Ind Pharm. 2008;34(8):890–902. https://doi.org/10.1080/03639040801929273.

    Article  PubMed  CAS  Google Scholar 

  23. Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19. https://doi.org/10.1021/mp8000793.

    Article  PubMed  CAS  Google Scholar 

  24. Shah N, Iyer RM, Mair HJ, Choi DS, Tian H, Diodone R, et al. Improved human bioavailability of vemurafenib, a practically insoluble drug, using an amorphous polymer-stabilized solid dispersion prepared by a solvent-controlled coprecipitation process. J Pharm Sci. 2013;102(3):967–81. https://doi.org/10.1002/jps.23425.

    Article  PubMed  CAS  Google Scholar 

  25. Shah N, Sandhu H, Phuapradit W, Pinal R, Iyer R, Albano A, et al. Development of novel microprecipitated bulk powder (MBP) technology for manufacturing stable amorphous formulations of poorly soluble drugs. Int J Pharm. 2012;438(1):53–60. https://doi.org/10.1016/j.ijpharm.2012.08.031.

    Article  PubMed  CAS  Google Scholar 

  26. Sarode AL, Sandhu H, Shah N, Malick W, Zia H. Hot melt extrusion for amorphous solid dispersions: temperature and moisture activated drug–polymer interactions for enhanced stability. Mol Pharm. 2013;10(10):3665–75. https://doi.org/10.1021/mp400165b.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang M, Li H, Lang B, O’Donnell K, Zhang H, Wang Z, et al. Formulation and delivery of improved amorphous fenofibrate solid dispersions prepared by thin film freezing. Eur J Pharm Biopharm. 2012;82(3):534–44. https://doi.org/10.1016/j.ejpb.2012.06.016.

    Article  PubMed  CAS  Google Scholar 

  28. Riedel A, Leopold CS. Degradation of omeprazole induced by enteric polymer solutions and aqueous dispersions: HPLC investigations. Drug Dev Ind Pharm. 2005;31(2):151–60. https://doi.org/10.1081/DDC-200047787.

    Article  PubMed  CAS  Google Scholar 

  29. Karandikar H, Ambardekar R, Kelly A, Gough T, Paradkar A. Systematic identification of thermal degradation products of HPMCP during hot melt extrusion process. Int J Pharm. 2015;486(1):252–8. https://doi.org/10.1016/j.ijpharm.2015.04.007.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The work was supported by the China Postdoctoral Science Foundation (Grant No. 2016M602442), the 111 project (Grant No. B16047), and the Natural Science Fund Project of Guangdong Province (Grant No. 2016A030312013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chune Zhu or Xin Pan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, T., She, Y., Zhu, C. et al. Influence of Polymers on the Physical and Chemical Stability of Spray-dried Amorphous Solid Dispersion: Dipyridamole Degradation Induced by Enteric Polymers. AAPS PharmSciTech 19, 2620–2628 (2018). https://doi.org/10.1208/s12249-018-1082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1082-4

KEY WORDS

Navigation