Skip to main content
Log in

Application of a Biodegradable Polyesteramide Derived from L-Alanine as Novel Excipient for Controlled Release Matrix Tablets

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This pre-formulation study assays the capacity of the polyesteramide PADAS, poly (L-alanine-dodecanediol-L-alanine-sebacic), as an insoluble tablet excipient matrix for prolonged drug release. The flow properties of PADAS were suitable for tableting, and the compressibility of tablets containing exclusively PADAS was evaluated by ESEM observation of the microstructure. The tablets were resistant to crushing and non-friable and they did not undergo disintegration (typical features of an inert matrix). Tablets containing 33.33% sodium diclofenac (DF), ketoprofen (K) or dexketoprofen trometamol (DK-T) as a model drug, in addition with 66.67% of polymer, were formulated, and the absence of interactions between the components was confirmed by differential scanning calorimetry. Dissolution tests showed that PADAS retained DF and K and prolonged drug release, following a Higuchi kinetic. The tablets containing DK-T did not retain the drug sufficiently for prolonged release to be established. Tablets containing DK-T and 66.67, 83.33 or 91.67% PADAS, compressed at 44.48 or 88.96 kN, were elaborated to determine the influence of the polymer amount and of the compression force on DK-T release. Both parameters significantly delayed drug release, except when the proportion of polymer was 91.67%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Rodríguez-Galán A, Franco L, Puiggalí J. Biodegradable poly (ester amide) s: synthesis and applications. In: Felton GP (ed). Biodegradable polymers: processing, degradation and applications. 2011a; 207–272.

  2. Rodríguez-Galán A, Franco L, Puiggali J. Degradable poly(esteramide)s for biomedical applications. Polymers. 2011b;3:65–99.

    Article  Google Scholar 

  3. Tarvairen T, Karjalainen T, Malin M, Phojolainen S, Tuominen J, Seppala J, et al. Degradation of and drug release from a novel 2,2-bis (2-oxazoline) linked poly (lactic acid) polymer. J Control Release. 2002;81:251–61.

    Article  Google Scholar 

  4. Tarvairen T, Malin M, Barragan I, Tuominen J, Seppala J, Jarvinen K. Effects of incorporated drugs on degradation of a novel 2,2-bis (2-oxazoline) linked poly (lactic acid) films. Int J Pharm. 2006;310:162–7.

    Article  Google Scholar 

  5. Andrés-Guerrero V, Zong M, Ramsay E, Rojas B, Sharkel S, Gallego B, et al. Novel biodegradable polyesteramide microspheres for controlled drug delivery in ophthalmology. J Control Release. 2015;211:105–17.

    Article  PubMed  Google Scholar 

  6. Raviña-Eirín E, Sánchez-Rodríguez B, Gómez-Amoza JL, Martínez-Pacheco R. Evaluation of the hyperbranched polymer Hybrane H1500 for production of matricial controlled-release particles by hot-melt extrusion. Int J Pharm. 2004;461:469–77.

    Article  Google Scholar 

  7. Praphakara RA, Munusamyb MA, Sadasivunic KK, Rajana M. Targeted delivery of rifampicin to tuberculosis-infected macrophages: design, in-vitro, and in-vivo performance of rifampicin-loaded poly (ester amide)s nanocarriers. Int J Pharm. 2016;513:628–35.

    Article  Google Scholar 

  8. Basu A, Kunduru KR, Katzhendler J, Domb AJ. Poly (α-hydroxy acid)s and poly(α-hydroxy acid-co-α-amino acid)s derived from amino acid. Adv Drug Deliv Rev. 2016;107:82–96.

    Article  CAS  PubMed  Google Scholar 

  9. Paredes N, Rodríguez-Galán A, Puiggalí J, Peraire C. Studies on the biodegradation and biocompatibiliy of a new poly(ester amide) derived from L-alanine. J Appl Polym Sci. 1998;69:1537–49.

    Article  CAS  Google Scholar 

  10. Vera M, Puiggalí J, Coudane J. Microspheres from new biodegradable poly(ester amide)s with different ratios of L- and D-alanine for controlled drug delivery. J Microencapsul. 2006;23:686–97.

    Article  CAS  PubMed  Google Scholar 

  11. Del Valle LJ, Roca D, Franco L, Puiggalí J, Rodríguez-Galán A. Preparation and release study of ibuprofen-loaded porous matrices of a biodegradable poly(ester amide) derived from L-alanine units. J Appl Polym Sci. 2011;122:1953–67.

    Article  CAS  Google Scholar 

  12. Del Valle LJ, Roa M, Díaz A, Casas MT, Puiggalí J, Rodríguez-Galán A. Electrospun nanofibers of a degradable poly(ester amide). Scaffolds loaded with antimicrobial agents. J Polym Res. 2012;19:9792.

    Article  Google Scholar 

  13. Grund S, Bauer M, Fischer D. Polymers in drug delivery. State of the art and future trends. Adv Eng Mater. 2011;13(3):B61–87. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Article  Google Scholar 

  14. Park K. Controlled drug delivery systems: past forward and future back. J Control Release. 2014;190:3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J Control Release. 2014;190:15–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. US Pharmacopoeia. The United States Pharmacopoeial Convention. Rockville 2014.

  17. Costa P, Sousa JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  PubMed  Google Scholar 

  18. Palomo ME, Ballesteros MP, Frutos P. Analysis of diclofenac sodium and derivates. J Pharm Biomed Anal. 1999;21:83–94.

    Article  CAS  PubMed  Google Scholar 

  19. Jelvehgari M, Barar J, Valizadeh H, Delf B, Ziapour M. Preparation of diclofenac sodium composite microparticles with improved initial release property. Trans F Nanotechnol Scientia Iranica. 2010;17(2):79–89.

    CAS  Google Scholar 

  20. Álvarez C. Influence of enantiomorphism on the solubility and dissolution rate of different racemic drugs. University Complutense of Madrid: Doctoral thesis; 2002.

  21. Amit K, Mahalaxmi R, Srinivas P, Deepak K. Enhancement of solubility and dissolution of poorly soluble drug: Ketoprofen as a model drug. J Chem Pharm Res. 2011;3(1):268–76.

    CAS  Google Scholar 

  22. Alcalá M. Utilization of spectroscopy NIR on the analytical control in pharmaceutics field. Developments starting in ATP. Universitat Autónoma of Barcelona: Doctoral thesis; 2006.

  23. Blanco M, Alcalá M, González J, Torras E. Near infrared spectroscopy in the study of polymorphic transformations. Anal Chim Acta. 2006;567:262–8.

    Article  CAS  Google Scholar 

  24. Villanova JCO, Ayresb E, Oréfice RL. Design of prolonged release tablets using new solid acrylic excipients for direct compression. Eur J Pharm Biopharm. 2011;79:664–73.

    Article  CAS  PubMed  Google Scholar 

  25. Reza MS, Quadir MA, Haider SS. Development of theophylline sustained release dosage form based on kollidon SR. Pak J Pharm Sci. 2002;15:63–70.

    PubMed  Google Scholar 

  26. Ferrero C, Jiménez-Castellanos MR. In vitro release testing of matrices based on starch–methyl methacrylate copolymers: effect of tablet crushing force, dissolution medium pH and stirring rate. Int J Pharm. 2014;461:270–9.

    Article  CAS  PubMed  Google Scholar 

  27. Hiremath SP, Saha RN. Design and study of rifampicin oral controlled release formulations. Drug Deliv. 2004;11:311–7.

    Article  CAS  PubMed  Google Scholar 

  28. Casas M, Ferrero C, Jiménez-Castellanos MR. Graft tapioca starch copolymers as novel excipients for controlled-release matrix tablets. Carbohydr Polym. 2010;80:71–7.

    Article  CAS  Google Scholar 

  29. Reza MS, Quadir MA, Haider SS. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery. J Pharm Pharm Sci. 2003;6:282–91.

    CAS  PubMed  Google Scholar 

  30. Grund J, Koerber M, Bodmeier R. Predictability of drug release from water-insoluble polymeric matrix tablets. Eur J Pharm Biopharm. 2013;85:650–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Dora Bonillo Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonillo Martínez, A.D., Galán, I.C.R. & Bellver, M.V.M. Application of a Biodegradable Polyesteramide Derived from L-Alanine as Novel Excipient for Controlled Release Matrix Tablets. AAPS PharmSciTech 18, 3286–3295 (2017). https://doi.org/10.1208/s12249-017-0809-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0809-y

KEY WORDS

Navigation