Skip to main content

Advertisement

Log in

Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: formulation development, in vitro and in vivo evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Lutein is widely used as diet supplement for prevention of age-related macular degeneration. However, the application and efficacy of lutein in food and nutritional products has been hampered due to its poor solubility and low oral bioavailability. This study aimed to develop and evaluate the formulation of oral fast-dissolving film (OFDF) containing lutein nanocrystals for enhanced bioavailability and compliance. Lutein nanocrystals were prepared by anti-solvent precipitation method and then encapsulated into the films by solvent casting method. The formulation of OFDF was optimized by Box-Behnken Design (BBD) as follows: HPMC 2.05% (w/v), PEG 400 1.03% (w/v), Cremophor EL 0.43% (w/v). The obtained films exhibited uniform thickness of 35.64 ± 1.64 μm and drug content of 0.230 ± 0.003 mg/cm2 and disintegrated rapidly in 29 ± 8 s. The nanocrystal-loaded films with reconstituted particle size of 377.9 nm showed better folding endurance and faster release rate in vitro than the conventional OFDFs with raw lutein. The microscope images, thermograms, and diffractograms indicated that lutein nanocrystals were highly dispersed into the films. After administrated to SD rats, t max was decreased from 3 h for oral solution formulation to less than 0.8 h for OFDF formulations, and C max increased from 150 ng/mL for solution to 350 ng/mL for conventional OFDF or 830 ng/mL for nanocrystal OFDF. The AUC 0-24h of conventional or nanocrystal OFDF was 1.37 or 2.08-fold higher than that of the oral solution, respectively. These results suggested that drug nanocrystal-loaded OFDF can be applied as a promising approach for enhanced bioavailability of poor soluble drugs like lutein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Apte RS. Targeting tissue lipids in age-related macular degeneration. EBioMedicine. 2016;5:26–7. doi:10.1016/j.ebiom.2016.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Querques G, Merle BM, Pumariega NM, Benlian P, Delcourt C, Zourdani A, et al. Dynamic Drusen remodelling in participants of the nutritional AMD treatment-2 (NAT-2) randomized trial. PLoS One. 2016;11(2):e0149219. doi:10.1371/journal.pone.0149219.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schmidl D, Garhofer G, Schmetterer L. Nutritional supplements in age-related macular degeneration. Acta Ophthalmol. 2015;93(2):105–21. doi:10.1111/aos.12650.

    Article  CAS  PubMed  Google Scholar 

  4. Gleize B, Tourniaire F, Depezay L, Bott R, Nowicki M, Albino L, et al. Effect of type of TAG fatty acids on lutein and zeaxanthin bioavailability. Br J Nutr. 2013;110(01):1–10. doi:10.1017/S0007114512004813.

    Article  CAS  PubMed  Google Scholar 

  5. Álvarez MV, Hincapié S, Saavedra N, Alzate LM, Muñoz AM, Cartagena CJ, et al. Exploring feasible sources for lutein production: food by-products and supercritical fluid extraction, a reasonable combination. Phytochem Rev. 2015;14(6):891–7. doi:10.1007/s11101-015-9434-0.

    Article  Google Scholar 

  6. Tian Y, Kijlstra A, Webers CA, Berendschot TT. Lutein and factor D: two intriguing players in the field of age-related macular degeneration. Arch Biochem Biophys. 2015;572:49–53. doi:10.1016/j.abb.2015.01.019.

    Article  CAS  PubMed  Google Scholar 

  7. Davidov-Pardo G, Gumus CE, McClements DJ. Lutein-enriched emulsion-based delivery systems: influence of pH and temperature on physical and chemical stability. Food Chem. 2016;196:821–7. doi:10.1016/j.foodchem.2015.10.018.

    Article  CAS  PubMed  Google Scholar 

  8. Yoo J, Baskaran R, Yoo B-K. Self-nanoemulsifying drug delivery system of lutein: physicochemical properties and effect on bioavailability of warfarin. Biomol Ther. 2013;21(2):173–9. doi:10.4062/biomolther.2013.011.

    Article  CAS  Google Scholar 

  9. Read AM. Influence of digestion model, product type, and enrichment level on in vitro bioavailability of lutein from high lutein functional bakery products. University of Guelph. 2011.

  10. Stancanelli R, Lojkner LD, Larsen KL, Guardo M, Cannava C, Tommasini S, et al. Structural and spectroscopic features of lutein/butanoyl-beta-cyclodextrin nanoassemblies. J Pharm Biomed Anal. 2012;71:214–8. doi:10.1016/j.jpba.2012.07.034.

    Article  CAS  PubMed  Google Scholar 

  11. Khan S, Boateng JS, Mitchell J, Trivedi V. Formulation, characterisation and stabilisation of buccal films for paediatric drug delivery of omeprazole. AAPS PharmSciTech. 2015;16(4):800–10. doi:10.1208/s12249-014-0268-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen BD, Shen CY, Yuan XD, Bai JX, Lv QY, Xu H, et al. Development and characterization of an orodispersible film containing drug nanoparticles. Eur J Pharm Biopharm. 2013;85(3):1348–56. doi:10.1016/j.ejpb.2013.09.019.

    Article  CAS  PubMed  Google Scholar 

  13. Montenegro-Nicolini M, Morales JO. Overview and future potential of buccal mucoadhesive films as drug delivery systems for biologics. AAPS PharmSciTech. 2016; doi:10.1208/s12249-016-0525-z.

    PubMed  Google Scholar 

  14. Abdelbary A, Bendas ER, Ramadan AA, Mostafa DA. Pharmaceutical and pharmacokinetic evaluation of a novel fast dissolving film formulation of flupentixol dihydrochloride. AAPS PharmSciTech. 2014;15(6):1603–10. doi:10.1208/s12249-014-0186-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Preis M. Orally disintegrating films and mini-tablets-innovative dosage forms of choice for pediatric use. AAPS PharmSciTech. 2015;16(2):234–41. doi:10.1208/s12249-015-0313-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ye X, Patil H, Feng X, Tiwari RV, Lu J, Gryczke A, et al. Conjugation of hot-melt extrusion with high-pressure homogenization: a novel method of continuously preparing Nanocrystal solid dispersions. AAPS PharmSciTech. 2016;17(1):78–88. doi:10.1208/s12249-015-0389-7.

    Article  CAS  PubMed  Google Scholar 

  17. Shen CY, Shen BD, Xu H, Bai JX, Dai L, Lv QY, et al. Formulation and optimization of a novel oral fast dissolving film containing drug nanoparticles by box-Behnken design-response surface methodology. Drug Dev Ind Pharm. 2014;40(5):649–56. doi:10.3109/03639045.2014.884116.

    Article  CAS  PubMed  Google Scholar 

  18. Kapoor R, Pathak S, Najmi AK, Aeri V, Panda BP. Processing of soy functional food using high pressure homogenization for improved nutritional and therapeutic benefits. Innov Food Sci Emerg. 2014;26:490–7. doi:10.1016/j.ifset.2014.05.015.

    Article  CAS  Google Scholar 

  19. Aslam M, Aqil M, Ahad A, Najmi AK, Sultana Y, Ali A. Application of Box–Behnken design for preparation of glibenclamide loaded lipid based nanoparticles: optimization, in vitro skin permeation, drug release and in vivo pharmacokinetic study. J Mol Liq. 2016;219:897–908. doi:10.1016/j.molliq.2016.03.069.

    Article  CAS  Google Scholar 

  20. Lei YY, Kong YD, Sui H, Feng J, Zhu RY, Wang WP. Enhanced oral bioavailability of glycyrrhetinic acid via nanocrystal formulation. Drug Deliv Transl Res. 2016;6(5):519–25. doi:10.1007/s13346-016-0300-4.

    Article  CAS  PubMed  Google Scholar 

  21. Lai F, Franceschini I, Corrias F, Sala MC, Cilurzo F, Sinico C, et al. Maltodextrin fast dissolving films for quercetin nanocrystal delivery. A feasibility study. Carbohydr Polym. 2015;121:217–23. doi:10.1016/j.carbpol.2014.11.070.

    Article  CAS  PubMed  Google Scholar 

  22. Alshetaili AS, Almutairy BK, Alshahrani SM, Ashour EA, Tiwari RV, Alshehri SM, et al. Optimization of hot melt extrusion parameters for sphericity and hardness of polymeric face-cut pellets. Drug Dev Ind Pharm. 2016;42(11):1833–41. doi:10.1080/03639045.2016.1178769.

    Article  CAS  PubMed  Google Scholar 

  23. Garsuch V, Breitkreutz J. Comparative investigations on different polymers for the preparation of fast-dissolving oral films. J Pharm Pharmacol. 2010;62(4):539–45. doi:10.1211/jpp/62.04.0018.

    Article  CAS  PubMed  Google Scholar 

  24. Sushma M, Raju YP, Sundaresan CR, Vandana KR, Kumar NV, Chowdary VH. Transmucosal delivery of metformin—a comprehensive study. Curr Drug Deliv. 2014;11(2):172–8.

    Article  CAS  PubMed  Google Scholar 

  25. Liew KB, Tan YT, Peh KK. Characterization of oral disintegrating film containing donepezil for Alzheimer disease. AAPS PharmSciTech. 2012;13(1):134–42. doi:10.1208/s12249-011-9729-4.

    Article  CAS  PubMed  Google Scholar 

  26. Xia YR, Chen F, Zhang HP, Luo CL. A new method for evaluating the dissolution of orodispersible films. Pharm Dev Technol. 2015;20(3):375–9. doi:10.3109/10837450.2014.882936.

    Article  CAS  PubMed  Google Scholar 

  27. Yanagi M, Hisajima T, Ishibashi H, Amemiya A, Abe S, Watanabe M. Oral candidiasis deteriorated by local application of a glucocorticoid-containing film in a mouse model. Biol Pharm Bull. 2008;31(2):278–83.

    Article  CAS  PubMed  Google Scholar 

  28. Croy SR, Kwon GS. Polysorbate 80 and Cremophor EL micelles deaggregate and solubilize nystatin at the core-corona interface. J Pharm Sci. 2005;94(11):2345–54. doi:10.1002/jps.20301.

    Article  CAS  PubMed  Google Scholar 

  29. Shanmugam S, Baskaran R, Balakrishnan P, Thapa P, Yong CS, Yoo BK. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing phosphatidylcholine for enhanced bioavailability of highly lipophilic bioactive carotenoid lutein. Eur J Pharm Biopharm. 2011;79(2):250–7. doi:10.1016/j.ejpb.2011.04.012.

    Article  CAS  PubMed  Google Scholar 

  30. Pandey GS, Kumar R, Sharma R, Singh Y, Teotia UVS. Effects of Maltodextrin and glycerin on mechanical properties of oral fast dissolving film of salbutamol sulphate. IJAPBC. 2014;3(1):199–209.

    CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was financially supported from the National Natural Science Foundation of China (81660665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenping Wang.

Ethics declarations

Ethics Statement

All procedures were approved by the Animal Research Ethics Committee, General Hospital of Ningxia Medical University.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Chen Liu and Daoxiao Chang contributed equally to this article as the co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Chang, D., Zhang, X. et al. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: formulation development, in vitro and in vivo evaluation. AAPS PharmSciTech 18, 2957–2964 (2017). https://doi.org/10.1208/s12249-017-0777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0777-2

Key words

Navigation