Skip to main content
Log in

A New Role of Fine Excipient Materials in Carrier-Based Dry Powder Inhalation Mixtures: Effect on Deagglomeration of Drug Particles During Mixing Revealed

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The potential of fine excipient materials to improve the performance of carrier-based dry powder inhalation mixtures is well acknowledged. The mechanisms underlying this potential are, however, open to question till date. Elaborate understanding of these mechanisms is a requisite for rational rather than empirical development of ternary dry powder inhalation mixtures. While effects of fine excipient materials on drug adhesion to and detachment from surfaces of carrier particle have been extensively investigated, effects on other processes, such as carrier–drug mixing, capsule/blister/device filling, or aerosolization in inhaler devices, have received little attention. We investigated the influence of fine excipient materials on the outcome of the carrier–drug mixing process. We studied the dispersibility of micronized fluticasone propionate particles after mixing with α-lactose monohydrate blends comprising different fine particle concentrations. Increasing the fine (D < 10.0 μm) excipient fraction from 1.84 to 8.70% v/v increased the respirable drug fraction in the excipient–drug mixture from 56.42 to 67.80% v/v (p < 0.05). The results suggest that low concentrations of fine excipient particles bind to active sites on and fill deep crevices in coarse carrier particles. As the concentration of fine excipient particles increases beyond that saturating active sites, they fill the spaces between and adhere to the surfaces of coarse carrier particles, creating projections and micropores. They thereby promote deagglomeration of drug particles during carrier–drug mixing. The findings pave the way for a comprehensive understanding of contributions of fine excipient materials to the performance of carrier-based dry powder inhalation mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jones MD, Price R. The influence of fine excipient particles on the performance of carrier-based dry powder inhalation formulations. Pharm Res. 2006;23:1665–74. doi:10.1007/s11095-006-9012-7.

    Article  CAS  PubMed  Google Scholar 

  2. Pilcer G, Wauthoz N, Amighi K. Lactose characteristics and the generation of the aerosol. Adv Drug Deliv Rev. 2012;64:233–56. doi:10.1016/j.addr.2011.05.003.

    Article  CAS  PubMed  Google Scholar 

  3. Jones MD, Hooton JC, Dawson ML, Ferrie AR, Price R. An investigation into the dispersion mechanisms of ternary dry powder inhaler formulations by the quantification of interparticulate forces. Pharm Res. 2008;25:337–48. doi:10.1007/s11095-007-9467-1.

    Article  CAS  PubMed  Google Scholar 

  4. Louey MD, Razia S, Stewart PJ. Influence of physico-chemical carrier properties on the in vitro aerosol deposition from interactive mixtures. Int J Pharm. 2003;252:87–98. doi:10.1016/S0378-5173(02)00621-X.

    Article  CAS  PubMed  Google Scholar 

  5. Le VNP, Robins E, Flament MP. Air permeability of powder: a potential tool for dry powder inhaler formulation development. Eur J Pharm Biopharm. 2010;76:464–9. doi:10.1016/j.ejpb.2010.09.003.

    Article  CAS  PubMed  Google Scholar 

  6. Cordts E, Steckel H. Capabilities and limitations of using powder rheology and permeability to predict dry powder inhaler performance. Eur J Pharm Biopharm. 2012;82:417–23. doi:10.1016/j.ejpb.2012.07.018.

    Article  CAS  PubMed  Google Scholar 

  7. Louey MD, Stewart PJ. Particle interactions involved in aerosol dispersion of ternary interactive mixtures. Pharm Res. 2002;19:1524–31. doi:10.1023/A:1020464801786.

    Article  CAS  PubMed  Google Scholar 

  8. Islam N, Stewart P, Larson I, Hartley P. Lactose surface modification by decantation: are drug-fine lactose ratios the key to better dispersion of salmeterol xinafoate from lactose-interactive mixtures? Pharm Res. 2004;21:492–9. doi:10.1023/B:PHAM.0000019304.91412.18.

    Article  CAS  PubMed  Google Scholar 

  9. Zeng XM, Pandhal KH, Martin GP. The influence of lactose carrier on the content homogeneity and dispersibility of beclomethasone dipropionate from dry powder aerosols. Int J Pharm. 2000;197:41–52. doi:10.1016/S0378-5173(99)00400-7.

    Article  CAS  PubMed  Google Scholar 

  10. Lucas P, Anderson K, Staniforth JN. Protein deposition from dry powder inhalers: fine particle multiplets as performance modifiers. Pharm Res. 1998;15:562–9. doi:10.1023/A:1011977826711.

    Article  CAS  PubMed  Google Scholar 

  11. Adi H, Larson I, Chiou H, Young P, Traini D, Stewart P. Agglomerate strength and dispersion of salmeterol xinafoate from powder mixtures for inhalation. Pharm Res. 2006;23:2556–65. doi:10.1007/s11095-006-9082-6.

    Article  CAS  PubMed  Google Scholar 

  12. Kinnunen H, Hebbink G, Peters H, Huck D, Makein L, Price R. Extrinsic lactose fines improve dry powder inhaler formulation performance of a cohesive batch of budesonide via agglomerate formation and consequential co-deposition. Int J Pharm. 2015;478:53–9. doi:10.1016/j.ijpharm.2014.11.019.

    Article  CAS  PubMed  Google Scholar 

  13. Kinnunen H, Hebbink G, Peters H, Shur J, Price R. An investigation into the effect of fine lactose particles on the fluidization behaviour and aerosolization performance of carrier-based dry powder inhaler formulations. AAPS PharmSciTech. 2014;15:898–909. doi:10.1208/s12249-014-0119-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shalash AO, Molokhia AM, Elsayed MMA. Insights into the roles of carrier microstructure in adhesive/carrier-based dry powder inhalation mixtures: carrier porosity and fine particle content. Eur J Pharm Biopharm. 2015;96:291–303. doi:10.1016/j.ejpb.2015.08.006.

  15. Hamishehkar H, Emami J, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H, et al. Influence of carrier particle size, carrier ratio and addition of fine ternary particles on the dry powder inhalation performance of insulin-loaded PLGA microcapsules. Powder Technol. 2010;201:289–95. doi:10.1016/j.powtec.2010.04.017.

    Article  CAS  Google Scholar 

  16. Pitchayajittipong C, Price R, Shur J, Kaerger JS, Edge S. Characterisation and functionality of inhalation anhydrous lactose. Int J Pharm. 2010;390:134–41. doi:10.1016/j.ijpharm.2010.01.028.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou QT, Armstrong B, Larson I, Stewart PJ, Morton DAV. Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders. Eur J Pharm Sci. 2010;40:412–21. doi:10.1016/j.ejps.2010.04.012.

    Article  CAS  PubMed  Google Scholar 

  18. Staniforth JN. Carrier particles for use in dry powder inhalers. 2000. U.S. Patent 6153224.

  19. Podczeck F. Adhesion forces in interactive powder mixtures of a micronized drug and carrier particles of various particle size distributions. J Adhes Sci Technol. 1998;12:1323–39. doi:10.1163/156856198X00461.

    Article  CAS  Google Scholar 

  20. Young PM, Edge S, Traini D, Jones MD, Price R, El-Sabawi D, et al. The influence of dose on the performance of dry powder inhalation systems. Int J Pharm. 2005;296:26–33. doi:10.1016/j.ijpharm.2005.02.004.

    Article  CAS  PubMed  Google Scholar 

  21. Begat P, Morton DAV, Staniforth JN, Price R. The cohesive-adhesive balances in dry powder inhaler formulations II: influence on fine particle delivery characteristics. Pharm Res. 2004;21:1826–33. doi:10.1023/B:PHAM.0000045236.60029.cb.

    Article  CAS  PubMed  Google Scholar 

  22. Shur J, Harris H, Jones MD, Kaerger JS, Price R. The role of fines in the modification of the fluidization and dispersion mechanism within dry powder inhaler formulations. Pharm Res. 2008;25:1631–40. doi:10.1007/s11095-008-9538-y.

    Article  CAS  PubMed  Google Scholar 

  23. Tuley R, Shrimpton J, Jones MD, Price R, Palmer M, Prime D. Experimental observations of dry powder inhaler dose fluidisation. Int J Pharm. 2008;358:238–47. doi:10.1016/j.ijpharm.2008.03.038.

    Article  CAS  PubMed  Google Scholar 

  24. Watling CP, Elliott JA, Cameron RE. Entrainment of lactose inhalation powders: a study using laser diffraction. Eur J Pharm Sci. 2010;40:352–8. doi:10.1016/j.ejps.2010.04.009.

    Article  CAS  PubMed  Google Scholar 

  25. de Boer AH, Chan HK, Price R. A critical view on lactose-based drug formulation and device studies for dry powder inhalation: which are relevant and what interactions to expect? Adv Drug Deliv Rev. 2012;64:257–74. doi:10.1016/j.addr.2011.04.004.

    Article  PubMed  Google Scholar 

  26. Dickhoff BHJ, de Boer AH, Lambregts D, Frijlink HW. The effect of carrier surface treatment on drug particle detachment from crystalline carriers in adhesive mixtures for inhalation. Int J Pharm. 2006;327:17–25. doi:10.1016/j.ijpharm.2006.07.017.

    Article  CAS  PubMed  Google Scholar 

  27. Grasmeijer F, Lexmond AJ, van den Noort M, Hagedoorn P, Hickey AJ, Frijlink HW, et al. New mechanisms to explain the effects of added lactose fines on the dispersion performance of adhesive mixtures for inhalation. PLoS One. 2014;9:e87825. doi:10.1371/journal.pone.0087825.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Physical constants of organic compounds. In: Lide DR, editor. CRC handbook of chemistry and physics. 90th ed. (CD-ROM Version 2010). Boca Raton: CRC Press; 2009. p. 3–1–3–523.

  29. Concentrative properties of aqueous solutions: density, refractive index, freezing point depression, and viscosity. In: Lide DR, editor. CRC handbook of chemistry and physics. 90th ed. (CD-ROM Version 2010). Boca Raton: CRC Press; 2009. p. 8–52–8–77.

  30. Sarkar S, Minatovicz B, Thalberg K, Chaudhuri B. Development of a rational design space for optimizing mixing conditions for formation of adhesive mixtures for dry-powder inhaler formulations. J Pharm Sci. 2017;106:129–39. doi:10.1016/j.xphs.2016.07.012.

    Article  CAS  PubMed  Google Scholar 

  31. Grasmeijer F, Hagedoorn P, Frijlink HW, de Boer HA. Mixing time effects on the dispersion performance of adhesive mixtures for inhalation. PLoS One. 2013;8:e69263. doi:10.1371/journal.pone.0069263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Behara SRB, Kippax P, McIntosh MP, Morton DAV, Larson I, Stewart P. Structural influence of cohesive mixtures of salbutamol sulphate and lactose on aerosolisation and de-agglomeration behaviour under dynamic conditions. Eur J Pharm Sci. 2011;42:210–9. doi:10.1016/j.ejps.2010.11.008.

    Article  CAS  PubMed  Google Scholar 

  33. Jaffari S, Forbes B, Collins E, Barlow DJ, Martin GP, Murnane D. Rapid characterisation of the inherent dispersibility of respirable powders using dry dispersion laser diffraction. Int J Pharm. 2013;447:124–31. doi:10.1016/j.ijpharm.2013.02.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Das SC, Behara SRB, Morton DAV, Larson I, Stewart PJ. Importance of particle size and shape on the tensile strength distribution and de-agglomeration of cohesive powders. Powder Technol. 2013;249:297–303. doi:10.1016/j.powtec.2013.08.034.

    Article  CAS  Google Scholar 

  35. El-Sabawi D, Edge S, Price R, Young PM. Continued investigation into the influence of loaded dose on the performance of dry powder inhalers: surface smoothing effects. Drug Dev Ind Pharm. 2006;32:1135–8. doi:10.1080/03639040600712920.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded by a Global Fellowship Award from the US Pharmacopeial Convention (USP). The authors would like to acknowledge the support of Prof. Dr. Nawal M. Khalafallah, Department of Pharmaceutics, Alexandria University, Alexandria, Egypt, and Prof. Dr. Abdulla M. Molokhia, European Egyptian Pharmaceutical Industries, Alexandria, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa M. A. Elsayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalash, A.O., Elsayed, M.M.A. A New Role of Fine Excipient Materials in Carrier-Based Dry Powder Inhalation Mixtures: Effect on Deagglomeration of Drug Particles During Mixing Revealed. AAPS PharmSciTech 18, 2862–2870 (2017). https://doi.org/10.1208/s12249-017-0767-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0767-4

KEY WORDS

Navigation