Skip to main content

Advertisement

Log in

The Novelty in Fabrication of Poly Vinyl Alcohol/κ-Carrageenan Hydrogel with Lactobacillus bulgaricus Extract as Anti-inflammatory Wound Dressing Agent

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Material barrier properties to microbes are an important issue in many pharmaceutical applications like wound dressings. A wide range of biomaterials has been used to manage the chronic inflamed wounds. Eight hydrogel membranes of poly vinyl alcohol (PVA) with κ-carrageenan (KC) and Lactobacillus bulgaricus extract (LAB) have been prepared by using freeze–thawing technique. To evaluate the membranes efficiency as wound dressing agents, various tests have been done like gel fraction, swelling behavior, mechanical properties, etc. The antibacterial activities of the prepared membranes were tested against the antibiotic-resistant bacterial isolates. In addition, the safety usage of the prepared hydrogel was checked on human dermal fibroblast cells. The anti-inflammatory properties of the prepared hydrogel on LPS-PBMC cell inflammatory model were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-qPCR). The analysis data of TGA, SEM, gel fraction, and swelling behavior showed changes in properties of prepared PVA\KC\LAB hydrogel membrane than pure PVA hydrogel membrane. The antibacterial activities of the prepared membranes augmented in LAB extract-prepared membranes. Out of the eight used hydrogel membranes, the PVAKC4 hydrogel membrane is the safest one on fibroblast cellular proliferation with a maximum proliferation percentage 97.3%. Also, all the used hydrogel membrane showed abilities to reduce the concentration of IL-2 and IL-8 compared with both negative and positive control. In addition, almost all the prepared hydrogel membrane showed variable abilities to downregulate the expression of TNF-α gene with superior effect of hydrogel membrane KC1. PVA/KC/LAB extract hydrogel membrane may be a promising material for wound dressing application and could accelerate the healing process of the chronic wound because of its antimicrobial and anti-inflammatory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Photos (1, 2)
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu X, Costa A, Burgess D. Protein encapsulation in unilamellar liposomes: high encapsulation efficiency and a novel technique to assess lipid–protein interaction. J Pharm Res. 2012;29:1919–31.

    Article  CAS  Google Scholar 

  2. Morita K, Shimoyamada M. Proposal of mechanism of the freeze–thaw fractionation of 7S and 11S globulins in soy milk. Food Chem. 2013;140:39–42.

    Article  CAS  PubMed  Google Scholar 

  3. Chou KS, Liu HL, Kao LH, Yang CM, Huang SH. A novel granulation technique using a freeze–thaw method. Ceram Int. 2014;40:8875–8.

    Article  CAS  Google Scholar 

  4. Cuicui D, Min Z, Guoying L. Effect of cyclic freeze–thawing process on the structure and properties of collagen. Int J Biol Macromol. 2015;80:317–23.

    Article  CAS  Google Scholar 

  5. Chen G, He G. Separation of water and oil from water-in-oil emulsion by freeze/thaw method. Sep Purif Technol. 2003;31:83–9.

    Article  CAS  Google Scholar 

  6. Benjakul S, Bauer F. Physicochemical and enzymatic changes of cod muscle proteins subjected to different freeze–thaw cycles. J Sci Food Agric. 2000;80:1143–50.

    Article  CAS  Google Scholar 

  7. Kueltzo LA, Wang W, Randolph TW, Carpenter JF. Effects of solution conditions, processing parameters and container materials on aggregation of a monoclonal antibody during freeze–thawing. J Pharm Sci. 2008;97:1801–12.

    Article  CAS  PubMed  Google Scholar 

  8. Afshari MJ, Sheikh N, Afarideh H. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing. Radiat Phys Chem. 2015;113:28–35.

    Article  CAS  Google Scholar 

  9. Peppas CM, Peppas NA. Structure and morphology or freeze/ thawed PVA hydrogels. Macromolecule. 2000;33:2472–9.

    Article  CAS  Google Scholar 

  10. Lazaridou A, Biliaderis CG. Cryogelation of cereal β-glucans: structure and molecular size effects. Food Hydrocoll. 2004;18:933–47.

    Article  CAS  Google Scholar 

  11. Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Lauprêtre F. Investigation of the crystallinity of freeze/thaw poly (vinyl alcohol) hydrogels by different techniques. Macromolecule. 2004;37:9510–6.

    Article  CAS  Google Scholar 

  12. Podorozhk EA, Kurskaya EA, Kulakova VK, Lozinsky VI. Cryotropic structuring of aqueous dispersions of fibrous collagen: the influence of the initial pH values. Food Hydrocoll. 2000;14:111–20.

    Article  Google Scholar 

  13. Giusti P, Lazzer L, Barbani N, Narducci P, Bonaretti A, Palla M, et al. Hydrogels of poly (vinyl alcohol) and collagen as new bioartificial materials. J Mater Sci Mater Med. 1993;4:538–42.

    Article  CAS  Google Scholar 

  14. Watase M, Nishinari K. Thermal and rheological properties of poly(vinyl alcohol) hydrogels prepared by repeated cycles of freezing and thawing. Makromol Chem. 1988;189:871–80.

    Article  CAS  Google Scholar 

  15. Kim JO, Park JK, Kim JH, Jin SG, Yong CS, Li DX, et al. Development of polyvinyl alcohol-sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. Int J Pharm. 2008;359:79–86.

    Article  CAS  PubMed  Google Scholar 

  16. Yang D, Yu K, Ai Y, Zhen H, et al. The mineralization of electrospun chitosan/poly(vinyl alcohol) nanofibrous membranes. Carbohydr Polym. 2011;84:990–6.

    Article  CAS  Google Scholar 

  17. Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly(d, l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 2002;82:105–14.

    Article  CAS  PubMed  Google Scholar 

  18. Xiaoliang Q, Xinyu H, Wei W, Hao Y, Junjian LJianfa Z, Wei D. Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbohydr Polym. 2015;118:60–9.

    Article  CAS  Google Scholar 

  19. Kobayashi M, Oka M. Characterization of a polyvinyl alcohol-hydrogel artificial articular cartilage prepared by injection molding. J Biomater Sci Polym Ed. 2004;15:741–51.

    Article  CAS  PubMed  Google Scholar 

  20. Ossipov D, Kootala S, Yi Z, Yang Y. Orthogonal chemoselective assembly of hyaluronic acid networks and nanogels for drug delivery. Macromolecules. 2013;46:4105–13.

    Article  CAS  Google Scholar 

  21. Liu Y, Vrana NE, Cahill P, Mc Guinness GB. Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B. 2009;90:492–502.

    Article  CAS  Google Scholar 

  22. Piculell L. Gelling carrageenans. In: Stephen AM, Phillips GO, Williams PA, editors. Food polysaccharides and their applications. 2nd edn. Boca Raton; 2006. p. 239–288.

  23. Chibata I, Tosa T, Sato T. Application of carrageenan beads for chromatographic purification of proteins. J Chromatogr A. 1981;215:93–8.

    Article  CAS  Google Scholar 

  24. El Fawal GF. Preparation, characterization and antibacterial activity of biodegradable films prepared from carrageenan. J Food Sci Technol. 2014;51:2234–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Campo VL, Kawano DF, da Silva DB, Carvalho I. Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym. 2009;77:167–80.

    Article  CAS  Google Scholar 

  26. Prajapati VD, Maheriya PM, Jani GK, Solanki HK. Carrageenan: a natural seaweed polysaccharide and its application. Carbohydr Polym. 2014;105:97–112.

    Article  CAS  PubMed  Google Scholar 

  27. Ellis A, Jacquier JC. Manufacture of food grade κ-carrageenan microspheres. J Food Eng. 2009;94:316–20.

    Article  CAS  Google Scholar 

  28. Chan SW, Mirhosseini H, Taip FS, Ling TC, Tan CP. Comparative study on the physicochemical properties of κ-carrageenan extracted from Kappaphycus alvarezii (doty) doty ex Silva in Tawau, Sabah, Malaysia and commercial κ-carrageenans. Food Hydrocoll. 2013;30:581–8.

    Article  CAS  Google Scholar 

  29. Suguna L, Singh S, Sivakumar P, Sampath P, Chandrakasan G. Influence of Terminalia chebula on dermal wound healing in rats. Phytother Res. 2002;16:227–31.

    Article  PubMed  Google Scholar 

  30. Morin RJ, Tomaselli NL. Interactive dressings and topical agents. Clin Plast Surg. 2007;34:643–58.

    Article  PubMed  Google Scholar 

  31. Halper J, Leshin LS, Lewis SJ, Li W. Wound healing and angiogenic properties of supernatants from Lactobacillus cultures. Exp Biol Med (Maywood). 2003;228:1329–37.

    Article  CAS  Google Scholar 

  32. Hansen JE, Jespersen LK. Wound or tissue dressing comprising lactic acid bacteria. Patent, US; 2010.

  33. El-Deeb N, Sharaf MM, El-Adawi H. Antibacterial and plasmid curing activity against multidrug resistant bacteria strains. Int J Pharmacol. 2015;11:114–21.

    Article  CAS  Google Scholar 

  34. Peppas NA, Stauffer SR. Reinforced uncrosslinked poly(− vinyl alcohol) gels produced by cyclic freezing–thawing processes: a short review. J Control Release. 1991;16:305–10.

    Article  CAS  Google Scholar 

  35. EL-Adawi H, Khalil MA, EL-Sheekh MM, El-Deeb NM, Hussein MZ. Cytotoxicity assay and antioxidant activities of the lactic acid bacterial strains. Afr J Microbiol Res. 2012;6:1700–12.

    Google Scholar 

  36. Yang X, Liu Q, Chen X, Yu F, Zhu Z. Investigation of PVA/ws-chitosan hydrogels prepared by combined gama-irradiation and freeze–thawing. Carbohydr Polym. 2008;73:401–8.

    Article  CAS  Google Scholar 

  37. Hadi H, Idayu IJ. Modification and swelling kinetic study of kappa-carrageenan-based hydrogel for controlled release study. J Chin Inst Chem Eng. 2013;44:182–91.

    Google Scholar 

  38. Borenfreund E, Puerner JA. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett. 1985;24:119–24.

    Article  CAS  PubMed  Google Scholar 

  39. Lohr HF, Goergen B, Buschenfelde KH, Gerken GJ. HCV replication in mononuclear cells stimulates anti- HCV-secreting B cells and reflects nonresponsiveness to interferon-alpha. J Med Virol. 1995;46:314–20.

    Article  CAS  PubMed  Google Scholar 

  40. Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S. Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv. 2014;4(47):24777–85.

    Article  CAS  Google Scholar 

  41. Augustine R, Rajendran R, Cvelbar U, Mozetič M, George A. Biopolymers for health, food, and cosmetic applications. Handb Biopolym Mater Blends Compos Gels Complex Netw. 2013; p. 801–849

  42. Katayama T, Nakauma M, Todoriki S, Phillips GO, Tada M. Radiation-induced polymerization of gum Arabic (Acacia sengal) in aqueous solution. Food Hydrocoll. 2006;20:983–9.

    Article  CAS  Google Scholar 

  43. Sato E, Matsuo, Tanaka. T Kinetics of discontinuous volume-phase transition of gels. J Chem Phys. 1988;89:1695–703.

    Article  Google Scholar 

  44. Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS. Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials. 1999;20:409–17.

    Article  CAS  PubMed  Google Scholar 

  45. Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2005;26:6335–42.

    Article  CAS  PubMed  Google Scholar 

  46. Joshua SB, Harshavardhan VP, John T. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm. 2013;441:181–91.

    Article  CAS  Google Scholar 

  47. Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AA, Vasconcelos WL, Mansur HS. Preparation and characterization of chitosan/ poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym. 2009;76:472–81.

    Article  CAS  Google Scholar 

  48. Sung JH, Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm. 2010;392:232–40.

    Article  CAS  PubMed  Google Scholar 

  49. Wu J, Gong X, Fan Y, Xia H. Physically crosslinked poly (vinyl alcohol) hydrogels with magnetic field controlled modulus. Soft Matter. 2011;7:6205–12.

    Article  CAS  Google Scholar 

  50. Autissier AL, Visage C, Pouzet C, Chaubet F, Letourneur D. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater. 2010;6:3640–8.

    Article  CAS  PubMed  Google Scholar 

  51. Allen CN, Harpur ES, Gray TJ, Hirst BH. Toxic effects of non-steroidal anti-inflammatory drugs in a human intestinal epithelial cell line (HCT-8) as assessed by the MTT and neutral red assays. Toxicol in Vitro. 1991;5:183–91.

    Article  CAS  PubMed  Google Scholar 

  52. Hwang MR, Lee JH, Kim YI, Kim JH, et al. Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation. AAPS PharmSciTech. 2010;11:1092–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trengove NJ, Bielefeldt-Ohmann H, Stacey MC. Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Rep Regen. 2000;8:13–25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehal M. El-Deeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Fawal, G.F., Yassin, A.M. & El-Deeb, N.M. The Novelty in Fabrication of Poly Vinyl Alcohol/κ-Carrageenan Hydrogel with Lactobacillus bulgaricus Extract as Anti-inflammatory Wound Dressing Agent. AAPS PharmSciTech 18, 1605–1616 (2017). https://doi.org/10.1208/s12249-016-0628-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0628-6

KEY WORDS

Navigation