Skip to main content

Advertisement

Log in

Influence of Hydroalcoholic Vehicle on In Vitro Transport of 4-Hydroxy Tamoxifen Through the Mammary Papilla (Nipple)

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Majority of breast cancers originate from epithelial cells in the duct and lobules in the breast. Current systemic treatments for breast cancer are associated with significant systemic side effects, thus warranting localized drug delivery approaches. The aim of this study was to investigate the influence of hydroalcoholic vehicle on topical delivery of 4-hydroxy tamoxifen (4-HT) through the mammary papilla (nipple). The in vitro permeability of 4-HT through porcine mammary papilla was studied using different hydroalcoholic vehicles (0, 33.33, and 66.66% alcohol). Nile red was used as a model lipophilic dye to characterize the drug transport pathway in the mammary papilla. The penetration of 4-HT through the mammary papilla increased with increase in alcohol concentration in the vehicle. The solubility of 4-HT was enhanced by increasing alcohol concentration in the vehicle. On the other hand, the epidermis/vehicle partition coefficient decreased with increase in alcohol concentration. The mammary papilla served as a depot and slowly released 4-HT into the receptor medium. Highest drug penetration was observed with saturated drug solution in 66.66% alcohol, and 4-HT levels were comparable to IC50 value of 4-HT. Results from this study demonstrate the possibility of using mammary papilla as a potential route for direct delivery of 4-HT to the breast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fisher B, Costantino JP, Wickerham DL, Cecchini RS, Cronin WM, Robidoux A, et al. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst. 2005;97:1652–62.

    Article  CAS  PubMed  Google Scholar 

  2. Osborne CK, Zhao HH, Fuqua SA. Selective estrogen receptor modulators: structure, function, and clinical use. J Clin Oncol. 2000;18:3172–86.

    Article  CAS  PubMed  Google Scholar 

  3. Lewis JS, Jordan VC. Selective estrogen receptor modulators (SERMs): mechanisms of anticarcinogenesis and drug resistance. Mutat Res. 2005;591:247–63.

    Article  CAS  PubMed  Google Scholar 

  4. Cohen I. Endometrial pathologies associated with postmenopausal tamoxifen treatment. Gynecol Oncol. 2004;94:256–66.

    Article  CAS  PubMed  Google Scholar 

  5. De Lima GR, Facina G, Shida JY, Chein MB, Tanaka P, Dardes RC, et al. Effects of low dose tamoxifen on normal breast tissue from premenopausal women. Eur J Cancer. 2003;39:891–8.

    Article  PubMed  Google Scholar 

  6. Port ER, Montgomery LL, Heerdt AS, Borgen PI. Patient reluctance toward tamoxifen use for breast cancer primary prevention. Ann Surg Oncol. 2001;8:580–5.

    Article  CAS  PubMed  Google Scholar 

  7. Fabian C, Tilzer L, Sternson L. Comparative binding affinities of tamoxifen, 4‐hydroxytamoxifen, and desmethyltamoxifen for estrogen receptors isolated from human breast carcinoma: correlation with blood levels in patients with metastatic breast cancer. Biopharm Drug Dispos. 1981;2:381–90.

    Article  CAS  PubMed  Google Scholar 

  8. Lim YC, Desta Z, Flockhart DA, Skaar TC. Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol. 2005;55:471–8.

    Article  CAS  PubMed  Google Scholar 

  9. Lim YC, Li L, Desta Z, Zhao Q, Rae JM, Flockhart DA, et al. Endoxifen, a secondary metabolite of tamoxifen, and 4-OH-tamoxifen induce similar changes in global gene expression patterns in MCF-7 breast cancer cells. J Pharmacol Exp Ther. 2006;318:503–12.

    Article  CAS  PubMed  Google Scholar 

  10. Goetz MP, Rae JM, Suman VJ, Safgren SL, Ames MM, Visscher DW, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol. 2005;23:9312–8.

    Article  CAS  PubMed  Google Scholar 

  11. Ahmad A, Shahabuddin S, Sheikh S, Kale P, Krishnappa M, Rane RC, et al. Endoxifen, a new cornerstone of breast cancer therapy: demonstration of safety, tolerability, and systemic bioavailability in healthy human subjects. Clin Pharmacol Ther. 2010;88:814–7.

    Article  CAS  PubMed  Google Scholar 

  12. Schweikart KM, Eldridge SR, Safgren SL, Parman T, Reid JM, Ames MM, et al. Comparative uterotrophic effects of endoxifen and tamoxifen in ovariectomized Sprague–Dawley rats. Toxicol Pathol. 2014;42:1188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhong Q, Zhang C, Zhang Q, Miele L, Zheng Z, Wang G. Boronic prodrug of 4-hydroxytamoxifen is more efficacious than tamoxifen with enhanced bioavailability independent of CYP2D6 status. BMC Cancer. 2015;15:625. doi:10.1186/s12885-015-1621-2.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zheng Y, Sun D, Sharm AK, Chen G, Amin S, Lazarus P. Elimination of antiestrogenic effects of active tamoxifen metabolites by glucuronidation. Drug Metab Dispos. 2007;35:1942–8.

    Article  CAS  PubMed  Google Scholar 

  15. Stearns V, Mori T, Jacobs LK, Khouri NF, Gabrielson E, Yoshida T, Kominsky SL, Huso DL, Jeter S, Powers P, Tarpinian K. Preclinical and clinical evaluation of intraductally administered agents in early breast cancer. Sci Transl Med. 2011;3: 106ra108. doi: 10.1126/scitranslmed.3002368.

  16. Lee O, Page K, Ivancic D, Helenowski I, Parini V, Sullivan ME, et al. A randomized phase II presurgical trial of transdermal 4-hydroxytamoxifen gel versus oral tamoxifen in women with ductal carcinoma in situ of the breast. Clin Cancer Res. 2014;20:3672–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pujol H, Girault J, Rouanet P, Fournier S, Grenier J, Simony J, et al. Phase I study of percutaneous 4-hydroxy-tamoxifen with analyses of 4-hydroxy-tamoxifen concentrations in breast cancer and normal breast tissue. Cancer Chemother Pharmacol. 1995;36:493–8.

    Article  CAS  PubMed  Google Scholar 

  18. Güngör S, Delgado-Charro MB, Masini-Etévé V, Potts RO, Guy RH. Transdermal flux predictions for selected selective oestrogen receptor modulators (SERMs): comparison with experimental results. J Cont Rel. 2013;172:601–6.

    Article  Google Scholar 

  19. Rusby JE, Brachtel EF, Michaelson JS, Koerner FC, Smith BL. Breast duct anatomy in the human nipple: three-dimensional patterns and clinical implications. Breast Cancer Res Treat. 2007;106:171–9.

    Article  PubMed  Google Scholar 

  20. Kikuchi K, Tagami H, Akaraphanth R, Aiba S. Functional analyses of the skin surface of the areola mammae: comparison between healthy adult male and female subjects and between healthy individuals and patients with atopic dermatitis. Br J Dermatol. 2011;164:97–102. e115712. doi:10.1371/journal.pone.0115712

  21. Love SM, Barsky SH. Anatomy of the nipple and breast ducts revisited. Cancer. 2004;101:1947–57.

    Article  PubMed  Google Scholar 

  22. Shao C, Li A, Zhang J, Xue D, Zhang W. Neglected aspect of the strategy for human breast diseases: trans-areolar drug delivery. Med Hypoth. 2012;78:4–6.

    Article  CAS  Google Scholar 

  23. Dave K, Averineni R, Sahdev P, Perumal O. Transpapillary drug delivery to the breast. PLoS One. 2014;9:e115712. doi:10.1371/journal.pone.0115712.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee LM, Davison Z, Heard CM. In vitro delivery of anti-breast cancer agents directly via the mammary papilla (nipple). Int J Pharm. 2010;387:161–6.

    Article  CAS  PubMed  Google Scholar 

  25. Kligman AM, Christophers E. Preparation of isolated sheets of human stratum corneum. Arch Dermatol. 1963;88:702.

    Article  CAS  PubMed  Google Scholar 

  26. Murata S, Kominsky SL, Vali M, Zhang Z, Garrett-Mayer E, Korz D, et al. Ductal access for prevention and therapy of mammary tumors. Cancer Res. 2006;66:638–45.

    Article  CAS  PubMed  Google Scholar 

  27. Mauvais-Jarvis P, Baudot N, Castaigne D, Banzet P, Kuttenn F. Trans-4-hydroxytamoxifen concentration and metabolism after local percutaneous administration to human breast. Cancer Res. 1986;46:1521–5.

    Google Scholar 

  28. Lee O, Ivancic D, Allu S, Shidfar A, Kenney K, Helenowski I, et al. Local transdermal therapy to the breast for breast cancer prevention and DCIS therapy: preclinical and clinical evaluation. Cancer Chemother Pharmacol. 2015;76:1235–46.

    Article  CAS  PubMed  Google Scholar 

  29. Deakin A. Induction of mammary ducts. Nature. 1936;137:619–20.

    Article  Google Scholar 

  30. Dooley WC, Ljung B, Veronesi U, Cazzaniga M, Elledge RM, O’Shaughnessy JA, et al. Ductal lavage for detection of cellular atypia in women at high risk for breast cancer. J Natl Cancer Inst. 2001;93:1624–32.

    Article  CAS  PubMed  Google Scholar 

  31. Higuchi T. Physical chemical analysis of percutaneous absorption process from creams and ointments. J Soc Cosmet Chem. 1960;11:85–97.

    Google Scholar 

  32. Ackerman AB, Kessler G, Gyorfi T, Tsou HC, Gottlieb GJ. Contrary view: the breast is not an organ per se, but a distinctive region of skin and subcutaneous tissue. Am J Dermatopathol. 2007;29:211–8.

    Article  PubMed  Google Scholar 

  33. Van der Merwe D, Riviere JE. Comparative studies on the effects of water, ethanol and water/ethanol mixtures on chemical partitioning into porcine stratum corneum and silastic membrane. Toxicol In Vitro. 2005;19:69–77.

    Article  PubMed  Google Scholar 

  34. Megrab NA, Williams AC, Barry BW. Oestradiol permeation across human skin, silastic and snake skin membranes: the effects of ethanol/water co-solvent systems. Int J Pharm. 1995;116:101–12.

    Article  CAS  Google Scholar 

  35. Kim D, Kim JL, Chien YW. Mutual hairless rat skin permeation-enhancing effect of ethanol/water system and oleic acid. J Pharm Sci. 1996;85:1191–5.

    Article  CAS  PubMed  Google Scholar 

  36. Kim M, Lee C, Kim D. Skin permeation of testosterone and its ester derivatives in rats. Pharm Pharmacol. 2000;52:369–75.

    Article  CAS  Google Scholar 

  37. Panchagnula R, Desu H, Jain A, Khandavilli S. Feasibility studies of dermal delivery of paclitaxel with binary combinations of ethanol and isopropyl myristate: role of solubility, partitioning and lipid bilayer perturbation. Farmaco. 2005;60:894–9.

    Article  CAS  PubMed  Google Scholar 

  38. Seeger H, Huober J, Wallwiener D, Mueck AO. Inhibition of human breast cancer cell proliferation with estradiol metabolites is as effective as with tamoxifen. Hormone Metab Res. 2004;36:277–80.

    Article  CAS  Google Scholar 

  39. Aygün AD, Akarsu S, Güvenç H, Kocabay K. Nipple and areola diameter in Turkish pubertal girls. J Adolesc Health. 1998;23:55–7.

    Article  PubMed  Google Scholar 

  40. Kisanga ER, Gjerde J, Guerrieri-Gonzaga A, Pigatto F, Pesci-Feltri A, Robertson C, et al. Tamoxifen and metabolite concentrations in serum and breast cancer tissue during three dose regimens in a randomized preoperative trial. Clin Cancer Res. 2004;10:2336–43.

    Article  CAS  PubMed  Google Scholar 

  41. Rohr UD, Altenburger R, Kissel T. Pharmacokinetics of the transdermal reservoir membrane system delivering β-estradiol: in vitro/in vivo-correlation. Pharm Res. 1998;15:877–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial and research support for Fahd M. Alsharif was provided by the Egyptian Cultural and Educational Bureau, Washington DC, USA. This work was funded by the South Dakota Governor’s 2010 Translational Cancer Research Center. Porcine tissues were provided by Dr. Kelley Bruns and Adam Rhody from the Department of Animal Science, South Dakota State University, Brookings, SD, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omathanu Perumal.

Ethics declarations

Disclaimer

This article reflects the views of the authors and should not be construed to represent FDA’s views or policies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsharif, F.M., Dave, K., Samy, A.M. et al. Influence of Hydroalcoholic Vehicle on In Vitro Transport of 4-Hydroxy Tamoxifen Through the Mammary Papilla (Nipple). AAPS PharmSciTech 18, 1366–1373 (2017). https://doi.org/10.1208/s12249-016-0608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0608-x

KEY WORDS

Navigation