Skip to main content
Log in

Practical Considerations for Determination of Glass Transition Temperature of a Maximally Freeze Concentrated Solution

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

Glass transition temperature is a unique thermal characteristic of amorphous systems and is associated with changes in physical properties such as heat capacity, viscosity, electrical resistance, and molecular mobility. Glass transition temperature for amorphous solids is referred as (T g), whereas for maximally freeze concentrated solution, the notation is (T g′). This article is focused on the factors affecting determination of T g′ for application to lyophilization process design and frozen storage stability. Also, this review provides a perspective on use of various types of solutes in protein formulation and their effect on T g′. Although various analytical techniques are used for determination of T g′ based on the changes in physical properties associated with glass transition, the differential scanning calorimetry (DSC) is the most commonly used technique. In this article, an overview of DSC technique is provided along with brief discussion on the alternate analytical techniques for T g′ determination. Additionally, challenges associated with T g′ determination, using DSC for protein formulations, are discussed. The purpose of this review is to provide a practical industry perspective on determination of T g′ for protein formulations as it relates to design and development of lyophilization process and/or for frozen storage; however, a comprehensive review of glass transition temperature (T g, T g′), in general, is outside the scope of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Detailed review on degree of supercooling and freezing mechanism is described in (57) and is not the focus of this work.

  2. Exact moisture level at the end of primary drying may vary based on the formulation components and the freeze drying cycle (16,17).

REFERENCES

  1. Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol. 2007;12:505–23.

    Article  CAS  PubMed  Google Scholar 

  2. Pikal M. Freeze drying. In: Swarbrick J, editor. Encyclopedia of pharmaceutical technology. Marcel Dekker, Inc.; 2001. p. 1299–326.

  3. Liu J. Physical characterization of pharmaceutical formulations in frozen and freeze-dried solid states: techniques and applications in freeze-drying development. Pharm Dev Technol. 2006;11:3–28.

    Article  CAS  PubMed  Google Scholar 

  4. Franks F. Freeze-drying of bioproducts: putting principles into practice. Eur J Pharm Biopharm. 1998;45:221–9.

    Article  CAS  PubMed  Google Scholar 

  5. Ediger MD, Angell CA, Nagel SR. Supercooled liquids and glasses. J Phys Chem. 1996;100:13200–12.

    Article  CAS  Google Scholar 

  6. Kasper JC, Friess W. The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm. 2011;78:248–63.

    Article  CAS  PubMed  Google Scholar 

  7. Searles JA, Carpenter JF, Randolph TW. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. J Pharm Sci. 2001;90:860–71.

    Article  CAS  PubMed  Google Scholar 

  8. Franks F. Freeze-drying: from empiricism to predictability. The significance of glass transitions. Dev Biol Stand. 1992;74:9–18. discussion 19.

    CAS  PubMed  Google Scholar 

  9. Bellows RJ, King CJ. Freeze-drying of aqueous solutions: maximum allowable operating temperature. Cryobiology. 1972;9:559–61.

    Article  CAS  PubMed  Google Scholar 

  10. Sacha GA, Nail SL. Thermal analysis of frozen solutions: multiple glass transitions in amorphous systems. J Pharm Sci. 2009;98:3397–405.

    Article  CAS  PubMed  Google Scholar 

  11. Sundaramurthi P, Suryanarayanan R. Calorimetry and complementary techniques to characterize frozen and freeze-dried systems. Adv Drug Deliv Rev. 2012;64:384–95.

    Article  CAS  PubMed  Google Scholar 

  12. Kett V, McMahon D, Ward K. Thermoanalytical techniques for the investigation of the freeze drying process and freeze-dried products. Curr Pharm Biotechnol. 2005;6:239–50.

    Article  CAS  PubMed  Google Scholar 

  13. Searles JA, Carpenter JF, Randolph TW. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine T’g pharmaceutical lyophilization. J Pharm Sci. 2001;90:872–87.

    Article  CAS  PubMed  Google Scholar 

  14. Her LM, Jefferis RP, Gatlin LA, Braxton B, Nail SL. Measurement of glass transition temperatures in freeze concentrated solutions of non-electrolytes by electrical thermal analysis. Pharm Res. 1994;11:1023–9.

    Article  CAS  PubMed  Google Scholar 

  15. Ablett S, Izzard MJ, Lillford PJ. Differential scanning calorimetric study of frozen sucrose and glycerol solutions. J Chem Soc Faraday Trans. 1992;88:789–94.

    Article  CAS  Google Scholar 

  16. Patel SM, Doen T, Pikal MJ. Determination of end point of primary drying in freeze-drying process control. AAPS PharmSciTech. 2010;11:73–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang X, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21:191–200.

    Article  CAS  PubMed  Google Scholar 

  18. Depaz RA, Pansare S, Patel SM. Freeze-drying above the glass transition temperature in amorphous protein formulations while maintaining product quality and improving process efficiency. J Pharm Sci. 2015:n/a-n/a.

  19. Berthier L, Biroli G. Theoretical perspective on the glass transition and amorphous materials. Rev Mod Phys. 2011;83:587–645.

    Article  CAS  Google Scholar 

  20. Her LM, Nail SL. Measurement of glass transition temperatures of freeze-concentrated solutes by differential scanning calorimetry. Pharm Res. 1994;11:54–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86:1–12.

    Article  CAS  PubMed  Google Scholar 

  22. Angell CA. Formation of glasses from liquids and biopolymers. Science. 1995;267:1924–35.

    Article  CAS  PubMed  Google Scholar 

  23. Roudaut G, Simatos D, Champion D, Contreras-Lopez E, Le Meste M. Molecular mobility around the glass transition temperature: a mini review. Innovative Food Sci Emerg Technol. 2004;5:127–34.

    Article  CAS  Google Scholar 

  24. Stodghill SP. Thermal analysis—a review of techniques and applications in the pharmaceutical sciences. Am Pharm Rev. 2010;13:29–36.

    CAS  Google Scholar 

  25. Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 2010;21:167–93.

    PubMed  PubMed Central  Google Scholar 

  26. Chang L, Milton N, Rigsbee D, Mishra DS, Tang X, Thomas LC, et al. Using modulated DSC to investigate the origin of multiple thermal transitions in frozen 10% sucrose solutions. Thermochim Acta. 2006;444:141–7.

    Article  CAS  Google Scholar 

  27. Aubuchon SR, Thomas LC, Theuerl W, Renner H. Investigations of the sub-ambient transitions in frozen sucrose by Modulated Differential Scanning Calorimetry (MDSC®). J Therm Anal Calorim. 1998;52:53–64.

    Article  CAS  Google Scholar 

  28. Chang BS, Randall CS. Use of subambient thermal analysis to optimize protein lyophilization. Cryobiology. 1992;29:632–56.

    Article  CAS  Google Scholar 

  29. Ringe D, Petsko GA. The ‘glass transition’ in protein dynamics: what it is, why it occurs, and how to exploit it. Biophys Chem. 2003;105:667–80.

    Article  CAS  PubMed  Google Scholar 

  30. Jansson H, Bergman R, Swenson J. Role of solvent for the dynamics and the glass transition of proteins. J Phys Chem B. 2011;115:4099–109.

    Article  CAS  PubMed  Google Scholar 

  31. Reat V, Dunn R, Ferrand M, Finney JL, Daniel RM, Smith JC. Solvent dependence of dynamic transitions in protein solutions. Proc Natl Acad Sci. 2000;97:9961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ngai KL, Capaccioli S, Shinyashiki N. The protein “glass” transition and the role of the solvent. J Phys Chem B. 2008;112:3826–32.

    Article  CAS  PubMed  Google Scholar 

  33. Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203:1–60.

    Article  CAS  PubMed  Google Scholar 

  34. Pikal MJ, Shah S. The collapse temperature in freeze drying: dependence on measurement methodology and rate of water removal from the glassy phase. Int J Pharm. 1990;62:165–86.

    Article  CAS  Google Scholar 

  35. Pansare S, DePaz R, Patel S. Improving lyophilization process efficiency via primary drying optimization.

  36. Yoshioka S, Aso Y. Glass transition-related changes in molecular mobility below glass transition temperature of freeze-dried formulations, as measured by dielectric spectroscopy and solid state nuclear magnetic resonance. J Pharm Sci. 2005;94:275–87.

    Article  CAS  PubMed  Google Scholar 

  37. Yoshioka S, Aso Y, Kojima S. Temperature- and glass transition temperature-dependence of bimolecular reaction rates in lyophilized formulations described by the Adam-Gibbs-Vogel equation. J Pharm Sci. 2004;93:1062–9.

    Article  CAS  PubMed  Google Scholar 

  38. Bhugra C, Pikal MJ. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci. 2008;97:1329–49.

    Article  CAS  PubMed  Google Scholar 

  39. Miller MA, Rodrigues MA, Glass MA, Singh SK, Johnston KP, Maynard JA. Frozen-state storage stability of a monoclonal antibody: aggregation is impacted by freezing rate and solute distribution. J Pharm Sci. 2013;102:1194–208.

    Article  CAS  PubMed  Google Scholar 

  40. Pansare S, Patel S, Lobo B, Shah A. DSC method optimization to improve the determination of glass transition temperature (Tg’) of frozen protein formulations. 2013 Colorado Protein Stability Conference. July 2013.

  41. Kett V, McMahon D, Ward K. Freeze-drying of protein pharmaceuticals—the application of thermal analysis. Cryo Letters. 2004;25:389–404.

    CAS  PubMed  Google Scholar 

  42. Reading M, Elliott D, Hill VL. A new approach to the calorimetric investigation of physical and chemical transitions. J Therm Anal. 1993;40:949–55.

    Article  CAS  Google Scholar 

  43. Coleman NJ, Craig DQM. Modulated temperature differential scanning calorimetry: a novel approach to pharmaceutical thermal analysis. Int J Pharm. 1996;135:13–29.

    Article  CAS  Google Scholar 

  44. Craig DQM, Royall PG. The use of modulated temperature DSC for the study of pharmaceutical systems: potential uses and limitations. Pharm Res. 1998;15:1152–3.

    Article  CAS  PubMed  Google Scholar 

  45. Badkar A, Yohannes P, Banga A. Application of TZERO calibrated modulated temperature differential scanning calorimetry to characterize model protein formulations. Int J Pharm. 2006;309:146–56.

    Article  CAS  PubMed  Google Scholar 

  46. Xiville NR, Lorente LT, Kordikowski A. MDSC parameter optimization for the determination of glass transitions using a design of experiments approach. Int J Pharm. 2012;422:271–9.

    Article  CAS  PubMed  Google Scholar 

  47. Santovea A, Piero MJ, Llabrés M. Comparison between DSC and TMDSC in the investigation into frozen aqueous cryoprotectants solutions. Drug Dev Ind Pharm. 2010;36:1413–21.

    Article  Google Scholar 

  48. Verdonck E, Schaap K, Thomas L. A discussion of the principles and applications of Modulated Temperature DSC (MTDSC). Int J Pharm. 1999;192:3–20.

    Article  CAS  PubMed  Google Scholar 

  49. Izutsu K, Yomota C, Kawanishi T. Impact of heat treatment on the physical properties of noncrystalline multisolute systems concentrated in frozen aqueous solutions. J Pharm Sci. 2011;100:5244–53.

    Article  CAS  PubMed  Google Scholar 

  50. Hill VL, Craig DQM, Feely LC. The effects of experimental parameters and calibration on MTDSC data. Int J Pharm. 1999;192:21–32.

    Article  CAS  PubMed  Google Scholar 

  51. Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12:799–806.

    Article  CAS  PubMed  Google Scholar 

  52. Schawe JEK. Modulated temperature DSC measurements: the influence of the experimental conditions. Thermochim Acta. 1996;271:127–40.

    Article  CAS  Google Scholar 

  53. Choosing conditions in Modulated DSC. http://www.ims.uconn.edu/wp-content/uploads/sites/190/2014/01/Thermal_Choosing-conditions-for-MDSC.pdf. Accessed 22 Dec 2015.

  54. Thermal analysis review: modulated DSC theory. http://www.eng.uc.edu/~beaucag/Classes/Characterization/ModulatedDSC_TAinst.pdf. Accessed 22 Dec 2015.

  55. Mujat M, Greco K, Galbally-Kinney KL, Hammer DX, Daniel Ferguson R, Iftimia N, et al. Optical coherence tomography-based freeze-drying microscopy. Biomed Opt Express. 2012;3:55–63.

    Article  PubMed  Google Scholar 

  56. Greco K, Mujat M, Galbally-Kinney KL, Hammer DX, Ferguson RD, Iftimia N, et al. Accurate prediction of collapse temperature using optical coherence tomography-based freeze-drying microscopy. J Pharm Sci. 2013;102:1773–85.

    Article  CAS  PubMed  Google Scholar 

  57. Passot S, Fonseca F, Alarcon-Lorca M, Rolland D, Marin M. Physical characterisation of formulations for the development of two stable freeze-dried proteins during both dried and liquid storage. Eur J Pharm Biopharm. 2005;60:335–48.

    Article  CAS  PubMed  Google Scholar 

  58. Colandene JD, Maldonado LM, Creagh AT, Vrettos JS, Goad KG, Spitznagel TM. Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent. J Pharm Sci. 2007;96:1598–608.

    Article  CAS  PubMed  Google Scholar 

  59. Fox TG, Loshaek S. Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers. J Polym Sci. 1955;15:371–90.

    Article  CAS  Google Scholar 

  60. Oh HJ, Freeman BD, McGrath JE, Lee CH, Paul DR. Thermal analysis of disulfonated poly(arylene ether sulfone) plasticized with poly(ethylene glycol) for membrane formation. Polymer. 2014;55:235–47.

    Article  CAS  Google Scholar 

  61. Her LM, Deras M, Nail SL. Electrolyte-induced changes in glass transition temperatures of freeze-concentrated solutes. Pharm Res. 1995;12:768–72.

    Article  CAS  PubMed  Google Scholar 

  62. Stärtzel P, Gieseler H, Gieseler M, Abdul-Fattah AM, Adler M, Mahler H, et al. Freeze drying of l-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability. J Pharm Sci. 2015;104:2345–58.

    Article  PubMed  Google Scholar 

  63. Shamblin SL, Taylor LS, Zografi G. Mixing behavior of colyophilized binary systems. J Pharm Sci. 1998;87:694–701.

    Article  CAS  PubMed  Google Scholar 

  64. Schneider HA. Glass transition behaviour of compatible polymer blends. Polymer. 1989;30:771–9. doi:10.1016/0032-3861(89)90172-9.

    Article  CAS  Google Scholar 

  65. Newman A. Basics of amorphous and amorphous solid dispersions. 2010. http://www.icdd.com/ppxrd/09/presentations/2010-ppxrd-Newman.pdf. Accessed 22 Dec 2015.

  66. Simha R, Boyer RF. On a general relation involving the glass temperature and coefficients of expansion of polymers. J Chem Phys. 1962;37:1003–7.

    Article  CAS  Google Scholar 

  67. Brekner M, Schneider HA, Cantow H. Approach to the composition dependence of the glass transition temperature of compatible polymer blends: 1. Polymer. 1988;29:78–85.

    Article  CAS  Google Scholar 

  68. Fox T, Flory P. Second‐order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. 1950;21:581–91.

  69. Feldstein MM, Roos A, Chevallier C, Creton C, Dormidontova EE. Relation of glass transition temperature to the hydrogen bonding degree and energy in poly(N-vinyl pyrrolidone) blends with hydroxyl-containing plasticizers: 3. Analysis of two glass transition temperatures featured for PVP solutions in liquid poly(ethylene glycol). Polymer. 2003;44:1819–34.

    Article  CAS  Google Scholar 

  70. Nesarikar VV, Nassar MN. Effect of cations and anions on glass transition temperatures in excipient solutions. Pharm Dev Technol. 2007;12:259–64.

    Article  CAS  PubMed  Google Scholar 

  71. Kumar L, Baheti A, Bansal AK. Effect of a counterion on the glass transition temperature (Tg’) during lyophilization of ganciclovir salt forms. Mol Pharm. 2011;8:309–14.

    Article  CAS  PubMed  Google Scholar 

  72. Kadoya S, Fujii K, Izutsu K, Yonemochi E, Terada K, Yomota C, et al. Freeze-drying of proteins with glass-forming oligosaccharide-derived sugar alcohols. Int J Pharm. 2010;389:107–13.

    Article  CAS  PubMed  Google Scholar 

  73. Liao X, Krishnamurthy R, Suryanarayanan R. Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol—implications in freeze-drying. Pharm Res. 2005;22:1978–85.

    Article  CAS  PubMed  Google Scholar 

  74. Teagarden DL, Baker DS. Practical aspects of lyophilization using non-aqueous co-solvent systems. Eur J Pharm Sci. 2002;15:115–33.

    Article  CAS  PubMed  Google Scholar 

  75. Telang C, Suryanarayanan R. Crystallization of cephalothin sodium during lyophilization from tert-butyl alcohol-water cosolvent system. Pharm Res. 2005;22:153–60.

    Article  CAS  PubMed  Google Scholar 

  76. Sare EJ, Angell CA. Glass-forming composition regions and glass transition temperature in nonaqueous electrolyte solutions. J Solut Chem. 1973;2:53–7.

    Article  CAS  Google Scholar 

  77. Kasraian K, DeLuca PP. The effect of tertiary butyl alcohol on the resistance of the dry product layer during primary drying. Pharm Res. 1995;12:491–5.

    Article  CAS  PubMed  Google Scholar 

  78. Kasraian K, DeLuca PP. Thermal analysis of the tertiary butyl alcohol-water system and its implications on freeze-drying. Pharm Res. 1995;12:484–90.

    Article  CAS  PubMed  Google Scholar 

  79. Pearson DS, Smith G. Dielectric analysis as a tool for investigating the lyophilization of proteins. Pharm Sci Technol Today. 1998;1:108–17.

    Article  CAS  Google Scholar 

  80. Ozawa T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355:35–42.

    Article  CAS  Google Scholar 

  81. Chiu J. Technique for simultaneous thermogravimetric, derivative thermogravimetric, differential thermal, and electrothermal analyses. Anal Chem. 1967;39:861–7.

    Article  CAS  Google Scholar 

  82. Gearing J, Malik KP, Matejtschuk P. Use of dynamic mechanical analysis (DMA) to determine critical transition temperatures in frozen biomaterials intended for lyophilization. Cryobiology. 2010;61:27–32.

    Article  CAS  PubMed  Google Scholar 

  83. Wendlandt WW. Thermal analysis. Anal Chem. 1982;54:97R–105.

    Article  CAS  Google Scholar 

  84. Price DM. Thermomechanical, dynamic mechanical and dielectric methods. In: Haines PJ, editor. Principles of thermal analysis and calorimetry. Cambridge: The Royal Society of Chemistry; 2002. p. 94–125.

    Chapter  Google Scholar 

  85. Duncan J. Principles and applications of mechanical thermal analysis. Principles and applications of thermal analysis. 2008;119–63.

  86. Gill PS, Sauerbrunn SR, Reading M. Modulated differential scanning calorimetry. J Therm Anal. 1993;40:931–9.

    Article  CAS  Google Scholar 

  87. Jones DS, Tian Y, Abu-Diak O, Andrews GP. Pharmaceutical applications of dynamic mechanical thermal analysis. Adv Drug Deliv Rev. 2012;64:440–8.

    Article  CAS  PubMed  Google Scholar 

  88. Wu J, Reading M, Craig DQM. Application of calorimetry, sub-ambient atomic force microscopy and dynamic mechanical analysis to the study of frozen aqueous trehalose solutions. Pharm Res. 2008;25:1396–404.

    Article  CAS  PubMed  Google Scholar 

  89. Meister E, Gieseler H. Freeze-dry microscopy of protein/sugar mixtures: drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition data. J Pharm Sci. 2009;98:3072–87.

    Article  CAS  PubMed  Google Scholar 

  90. Cruz IB, Oliveira JC, MacInnes WM. Dynamic mechanical thermal analysis of aqueous sugar solutions containing fructose, glucose, sucrose, maltose and lactose. Int J Food Sci Technol. 2001;36:539–50.

    Article  CAS  Google Scholar 

  91. Hajare AA, More HN, Walekar PS, Hajare DA. Optimization of Freeze drying cycle protocol using real time microscopy and integrated differential thermal analysis-electrical impedance. Res J Pharm Technol. 2012;5:985–91.

    Google Scholar 

  92. Keavney JJ, Eberlin EC. The determination of glass transition temperatures by differential thermal analysis. J Appl Polym Sci. 1960;3:47–53.

    Article  CAS  Google Scholar 

  93. Kett V. Development of freeze-dried formulations using thermal analysis and microscopy. Am Pharm Rev. 2010;13:80–7.

    Google Scholar 

  94. Murphy CB. Thermal analysis. Anal Chem. 1966;38:443–51.

    Article  Google Scholar 

  95. Morris KR, Evans SA, MacKenzie AP, Scheule D, Lordi NG. Prediction of lyophile collapse temperature by dielectric analysis. PDA J Pharm Sci Technol. 1994;48:318–29.

    CAS  PubMed  Google Scholar 

  96. Evans SA, Morris KR, MacKenzie AP, Lordi NG. Dielectric characterization of thermodynamic first order events in model frozen systems intended for lyophilization. PDA J Pharm Sci Technol. 1995;49:2–8.

    CAS  PubMed  Google Scholar 

  97. Meister E, Sasic S, Gieseler H. Freeze-dry microscopy: impact of nucleation temperature and excipient concentration on collapse temperature data. AAPS PharmSciTech. 2009;10:582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Manubhai Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pansare, S.K., Patel, S.M. Practical Considerations for Determination of Glass Transition Temperature of a Maximally Freeze Concentrated Solution. AAPS PharmSciTech 17, 805–819 (2016). https://doi.org/10.1208/s12249-016-0551-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0551-x

KEY WORDS

Navigation