Skip to main content

Advertisement

Log in

Light-Activatable Gold Nanoshells for Drug Delivery Applications

  • Review Article
  • Theme: Translational Application of Nano Delivery Systems: Emerging Cancer Therapy
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Gold nanoshells (AuNSs) are currently being investigated as nanocarriers for drug delivery systems and have both diagnostic and therapeutic applications, including photothermal ablation, hyperthermia, drug delivery, and diagnostic imaging, particularly in oncology. AuNSs are valuable for their localized surface plasmon resonance, biocompatibility, low immunogenicity, and facile functionalization. AuNSs used for drug delivery can be spatially and temporally triggered to release controlled quantities of drugs inside the target cells when illuminated with a near-infrared (NIR) laser. Recently, many research groups have demonstrated that these AuNS complexes are able to deliver antitumor drugs (e.g., doxorubicin, paclitaxel, small interfering RNA, and single-stranded DNA) into cancer cells, which enhances the efficacy of treatment. AuNSs can also be functionalized with active targeting ligands such as antibodies, aptamers, and peptides to increase the particles’ specific binding to the desired targets. This article reviews the current research on NIR light-activatable AuNSs used as nanocarriers for drug delivery systems and cancer theranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Link S, El-Sayed MA. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem. 2003;54:331–6.

    Article  CAS  PubMed  Google Scholar 

  2. Halas NJ, Lal S, Link L, Chang W-S, Natelson D, Hafner JH, et al. A plethora of plasmonics from the laboratory for nanophotonics at Rice University. Adv Mater. 2012;24:4842–77.

    Article  CAS  PubMed  Google Scholar 

  3. Bardhan R, Lal S, Joshi A, Halas NJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res. 2011;44:936–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001;19:316–7.

    Article  CAS  PubMed  Google Scholar 

  5. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. P Natl Acad Sci. 2003;100:13549–54.

    Article  CAS  Google Scholar 

  6. Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res. 2008;41:1842–51.

    Article  CAS  PubMed  Google Scholar 

  7. Melancon MP, Zhou M, Li C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc Chem Res. 2011;44:947–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Barhoumi A, Huschka R, Bardhan R, Knight MW, Halas NJ. Light-induced release of DNA from plasmon-resonant nanoparticles: towards light-controlled gene therapy. Chem Phys Lett. 2009;482:171–9.

    Article  CAS  Google Scholar 

  9. Braun GB, Pallaoro A, Wu G, Missirlis D, Zasadzinski JA, Tirrell M, et al. Laser-activated gene silencing via gold nanoshell-siRNA conjugates. ACS Nano. 2009;3:2007–15.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao N, You J, Zeng Z, Li C, Zu Y. An ultra pH-sensitive and aptamer-equipped nanoscale drug-delivery system for selective killing of tumor cells. Small. 2013;9:3477–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lu W, Zhang G, Zhang R, Flores II LG, Huang Q, Gelovani JG, et al. Tumor site–specific silencing of NF-κB p65 by targeted hollow gold nanosphere–mediated photothermal transfection. Cancer Res. 2010;70:3177–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zhang Z, Wang J, Chen C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv Mater. 2013;25:3869–80.

    Article  CAS  PubMed  Google Scholar 

  13. Alexander-Bryant AA, Vanden Berg-Foels WS, Wen X. Bioengineering strategies for designing targeted cancer therapies. Adv Cancer Res. 2013;118:1–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater. 2011;23:H217–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cheng Z, Zaki AA, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science. 2012;338:903–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10:3223–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Huschka R, Neumann O, Barhoumi A, Halas NJ. Visualizing light-triggered release of molecules inside living cells. Nano Lett. 2010;10:4117–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. You J, Zhang G, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano. 2010;4:1033–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. You J, Zhang R, Zhang G, Zhong M, Liu Y, Van Pelt CS, et al. Photothermal chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release. J Control Release. 2012;158:319–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. You J, Shao R, Wei X, Gupta S, Li C. Near-infrared light triggers release of paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small. 2010;6:1022–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jin Y. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release. Acc Chem Res. 2013. doi:10.1021/ar400086e.

    Google Scholar 

  22. Xia X, Wang Y, Ruditskiy A, Xia Y. 25th Anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv Mater. 2013;25:6313–33.

    Article  CAS  PubMed  Google Scholar 

  23. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies, and toxicity. Chem Soc Rev. 2009;38:1759–82.

    Article  CAS  PubMed  Google Scholar 

  24. Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev. 2006;35:209–17.

    Article  CAS  PubMed  Google Scholar 

  25. Dreaden EC, Mackey MA, Huang X, Kangy B, El-Sayed MA. Beating cancer in multiple ways using nanogold. Chem Soc Rev. 2011;40:3391–404.

    Article  CAS  PubMed  Google Scholar 

  26. Averitt RD, Sarkar D, Halas NJ. Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys Rev Lett. 1997;78:4217–20.

    Article  CAS  Google Scholar 

  27. Oldenberg SJ, Averitt RD, Westcott SL, Halas NJ. Nanoengineering of optical resonances. Chem Phys Lett. 1998;288:243–7.

    Article  Google Scholar 

  28. Loo C, Lin A, Hirsch L, Lee M-H, Barton J, Halas NJ, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat. 2004;3:33–40.

    Article  CAS  PubMed  Google Scholar 

  29. Chen W, Bardhan R, Bartels M, Perez-Torres C, Pautler RG, Halas NJ, et al. A Molecularly targeted theranostic probe for ovarian cancer. Mol Cancer Ther. 2010;9:1028–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Liang HP, Wan LJ, Bai CL, Jiang L. Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes. J Phys Chem B. 2005;109:7795–800.

    Article  CAS  PubMed  Google Scholar 

  31. Prevo BG, Esakoff SA, Mikhailovsky A, Zasadzinski JA. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small. 2008;4:1183–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ji XJ, Shao RP, Elliott AM, Stafford RJ, Esparza-Coss E, Bankson JA, et al. Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J Phys Chem C. 2007;111:6245–51.

    Article  CAS  Google Scholar 

  33. Nandwana V, Elkins KE, Poudyal N, Chaubey GS, Yano K, Liu JP. Size and shape control of monodisperse FePt nanoparticles. J Phys Chem C. 2007;111:4185–9.

    Article  CAS  Google Scholar 

  34. Yang J, Lee J, Kang J, Oh SJ, Ko H-J, Son J-H, et al. Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv Mater. 2009;21:4339–42.

    Article  CAS  PubMed  Google Scholar 

  35. Dong W, Li Y, Niu D, Ma Z, Gu J, Chen Y, et al. Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv Mater. 2011;23:5392–7.

    Article  CAS  PubMed  Google Scholar 

  36. Jin YD, Gao XH. Plasmonic fluorescent quantum dots. Nat Nanotechnol. 2009;4:571–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Jin Y, Gao X. Spectrally tunable leakage-free gold nanocontainers. J Am Chem Soc. 2009;131:17774–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;47:2971–3010.

    Article  Google Scholar 

  39. Melancon MP, Stafford RJ, Li C. Challenges to effective cancer nanotheranostics. J Control Release. 2012;164:177–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Cheng JZ, et al. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res. 2009;15:876–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lee HJ, Liu Y, Zhao J, Zhou M, Bouchard RR, Mitcham T, et al. In vitro and in vivo mapping of drug release after laser ablation thermal therapy with doxorubicin-loaded hollow gold nanoshells using fluorescence and photoacoustic imaging. J Control Release. 2013;172:152–8.

    Article  CAS  PubMed  Google Scholar 

  42. Nagamitsu A, Greish K, Maeda H. Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMNCS: cases of advanced solid tumors. Jpn J Clin Oncol. 2009;39:756–66.

    Article  PubMed  Google Scholar 

  43. Love JC, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105:1103–69.

    Article  CAS  PubMed  Google Scholar 

  44. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  CAS  PubMed  Google Scholar 

  45. Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 2004;59:S21–6.

    Article  Google Scholar 

  46. You J, Zhang R, Xiong C, Zhong M, Melancon MP, Gupta S, et al. Effective photothermal chemotherapy using doxorubicin loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res. 2012;72:4777–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Huschka R, Zuloaga J, Knight MW, Brown LV, Nordlander P, Halas NJ. Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. J Am Chem Soc. 2011;133:12247–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Neto BAD, Lapis AAM. Recent developments in the chemistry of deoxyribonucleic acid (DNA) intercalators: principles, design, synthesis, applications and trends. Molecules. 2009;14:1725–46.

    Article  CAS  PubMed  Google Scholar 

  49. Huschka R, Barhoumi A, Liu Q, Roth JA, Ji L, Halas NJ. Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano. 2012;6:7681–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Karin M, Cao Y, Greten FR, Li ZW. NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–10.

    Article  CAS  PubMed  Google Scholar 

  51. Rouleaua L, Bertia R, Ng VWK, Matteau-Pelletiera C, Lamd T, et al. VCAM-1-targeting gold nanoshell probe for photoacoustic imaging of atherosclerotic plaque in mice. Contrast Media Mol Imaging. 2013;8:27–39.

    Google Scholar 

  52. Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, et al. Gold nanoparticles—the theranostic challenge for PPPM: nanocardiology application. EPMA J. 2013;4:1–17.

    Article  Google Scholar 

  53. Smith DM, Simon JK, Baker Jr JR. Applications of nanotechnology for immunology. Nat Rev Immunol. 2013;13:592–605.

    Article  CAS  PubMed  Google Scholar 

  54. Melancon MP, Lu W, Yang Z, Zhang R, et al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther. 2008;7:1730–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Luanne Jorewicz in MD Anderson’s Department of Scientific Publications for editing the manuscript. This work was supported in part by a grant from the John S. Dunn Foundation and by the National Institutes of Health through MD Anderson’s Cancer Center Support Grant CA016672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marites P. Melancon.

Additional information

Guest Editors: Mahavir B. Chougule and Chalet Tan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singhana, B., Slattery, P., Chen, A. et al. Light-Activatable Gold Nanoshells for Drug Delivery Applications. AAPS PharmSciTech 15, 741–752 (2014). https://doi.org/10.1208/s12249-014-0097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0097-8

KEY WORDS

Navigation