Skip to main content

Advertisement

Log in

Liposomal Oxymatrine in Hepatic Fibrosis Treatment: Formulation, In Vitro and In Vivo Assessment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim was to develop a liposomal oxymatrine conjugating d-alpha tocopheryl polyethylene glycol 1000 succinate (OMT-LIP) for enhanced therapeutics of hepatic fibrosis. OMT-LIP was prepared using the remote loading method. The influences of formulation compositions on the encapsulation efficiency of OMT-LIP were investigated. Mean particle size, zeta potential, morphology, in vitro release, fibrotic liver targeting, and therapeutics of OMT-LIP were thoroughly assessed. The intraliposomal buffer composition and concentration, extraliposomal phase composition and pH, types of phospholipid, lipid molar ratio composition, and theoretical drug loading are crucial factors to entrap OMT into liposomes. The optimum OMT-LIP presented spherically unilamellar microstructures with entrapment efficiency of 79.7 ± 3.9%, mean particle size of 121.6 ± 52.9 nm, and zeta potential of −5.87 mV. OMT-LIP significantly increased the accumulation of OMT in the fibrotic liver with an 11.5-fold greater AUC than OMT solution in the dimethylnitrosamine (DMN)-induced hepatic fibrosis animals. OMT-LIP could be a potential strategy to improve treatment outcomes for hepatic fibrosis, showing the protective effects to mice given CCl4 and the enhanced therapeutics to mice with either DMN or CCl4-induced hepatic fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Iavarone M, Colombo M. HBV-related HCC, clinical issues and therapy. Dig Liver Dis. 2011;43 Suppl 1:S32–9.

    Article  PubMed  Google Scholar 

  2. Pinzani M, Rosselli M, Zuckermann M. Liver cirrhosis. Best Pract Res Clin Gastroenterol. 2011;25:281–90.

    Article  CAS  PubMed  Google Scholar 

  3. Bonis PAL, Friedman SL, Kaplan MM. Is liver fibrosis reversible? N Engl J Med. 2001;344:452–4.

    Article  CAS  PubMed  Google Scholar 

  4. Friedman SL. Cytokines and fibrogenesis. Semin Liver Dis. 1999;19:129–40.

    Article  CAS  PubMed  Google Scholar 

  5. Li D, Friedman SL. Liver fibrogenesis and the role of hepatic stellate cells: new insights and prospects for therapy. J Gastroenterol Hepatol. 1999;14:618–33.

    Article  CAS  PubMed  Google Scholar 

  6. Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 2011;25:195–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Coulon S, Heindryckx F, Geerts A, Van Steenkiste C, Colle I, Van Vlierberghe H. Angiogenesis in chronic liver disease and its complications. Liver Int. 2011;31:146–62.

    Article  CAS  PubMed  Google Scholar 

  8. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  CAS  PubMed  Google Scholar 

  9. Chen X, Sun R, Hu J, Mo Z, Yang Z, Liao D, et al. Attenuation of bleomycin-induced lung fibrosis by oxymatrine is associated with regulation of fibroblast proliferation and collagen production in primary culture. Basic Clin Pharmacol Toxicol. 2008;103:278–86.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Wang S, Li Y, Xiao Z, Hu Z, Zhang J. Sophocarpine and matrine inhibit the production of TNF-alpha and IL-6 in murine macrophages and prevent cachexia-related symptoms induced by colon26 adenocarcinoma in mice. Int Immunopharmacol. 2008;8:1767–72.

    Article  CAS  PubMed  Google Scholar 

  11. Wu XL, Hang TJ, Shen JP, Zhang YD. Determination and pharmacokinetic study of oxymatrine and its metabolite matrine in human plasma by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2006;41:918–24.

    Article  CAS  PubMed  Google Scholar 

  12. Daneshpour N, Griffin M, Collighan R, Perrie Y. Targeted delivery of a novel group of site-directed transglutaminase inhibitors to the liver using liposomes: a new approach for the potential treatment of liver fibrosis. J Drug Target. 2010;19:624–31.

    Article  PubMed  Google Scholar 

  13. Wang T, Yin X, Lu Y, Shan W, Xiong S. Formulation, antileukemia mechanism, pharmacokinetics, and biodistribution of a novel liposomal emodin. Int J Nanomedicine. 2012;7:2325–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Di Sario A, Candelaresi C, Omenetti A, Benedetti A. Vitamin E in chronic liver diseases and liver fibrosis. Vitam Horm. 2007;76:551–73.

    Article  PubMed  Google Scholar 

  15. Liu SL, Degli Esposti S, Yao T, Diehl AM, Zern MA. Vitamin E therapy of acute CCl4-induced hepatic injury in mice is associated with inhibition of nuclear factor kappa B binding. Hepatology. 1995;22:1474–81.

    CAS  PubMed  Google Scholar 

  16. von Herbay A, Stahl W, Niederau C, Sies H. Vitamin E improves the aminotransferase status of patients suffering from viral hepatitis C: a randomized, double-blind, placebo-controlled study. Free Radic Res. 1997;27:599–605.

    Article  Google Scholar 

  17. Helson L, Helson C. Effects of vitamin E on fibroblast fibronectin. Nutr Cancer. 1985;7:221–7.

    Article  CAS  PubMed  Google Scholar 

  18. Latella G, Vetuschi A, Sferra R, Catitti V, D’Angelo A, Zanninelli G, et al. Targeted disruption of Smad3 confers resistance to the development of dimethylnitrosamine-induced hepatic fibrosis in mice. Liver Int. 2009;29:997–1009.

    Article  CAS  PubMed  Google Scholar 

  19. Nasir GA, Mohsin S, Khan M, Shams S, Ali G, Khan SN, et al. Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice. J Transl Med. 2013;11:78. doi:10.1186/1479-5876-11-78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Chong LW, Hsu YC, Chiu YT, Yang KC, Huang YT. Anti-fibrotic effects of thalidomide on hepatic stellate cells and dimethylnitrosamine-intoxicated rats. J Biomed Sci. 2006;13:403–18.

    Article  CAS  PubMed  Google Scholar 

  21. Miao CY, Deng SH, Chen JF. Studies on preparation of anionic oxymatrine liposomes and its physicochemical properties. Chin Pharm J. 2006;41:1400–4.

    CAS  Google Scholar 

  22. Du S, Deng Y. Studies on the encapsulation of oxymatrine into liposomes by ethanol injection and pH gradient method. Drug Dev Ind Pharm. 2006;32:791–7.

    Article  CAS  PubMed  Google Scholar 

  23. Zucker D, Marcus D, Barenholz Y, Goldblum A. Liposome drugs’ loading efficiency: a working model based on loading conditions and drug’s physicochemical properties. J Control Release. 2009;139:73–80.

    Article  CAS  PubMed  Google Scholar 

  24. Haran G, Cohen R, Bar LK, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta. 1993;1151:201–15.

    Article  CAS  PubMed  Google Scholar 

  25. Xiong S, Li H, Yu B, Wu J, Lee RJ. Triggering liposomal drug release with a lysosomotropic agent. J Pharm Sci. 2010;99:5011–8.

    Article  CAS  PubMed  Google Scholar 

  26. Fritze A, Hens F, Kimpfler A, Schubert R, Peschka-Süss R. Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta. 2006;1758:1633–40.

    Article  CAS  PubMed  Google Scholar 

  27. Ueno T, Nakamura T, Torimura T, Sata M. Angiogenic cell therapy for hepatic fibrosis. Med Mol Morphol. 2006;39:16–21.

    Article  CAS  PubMed  Google Scholar 

  28. Lee CP, Shih PH, Hsu CL, Yen GC. Hepatoprotection of tea seed oil (Camellia oleifera Abel.) against CCl4-induced oxidative damage in rats. Food Chem Toxicol. 2007;45:888–95.

    Article  CAS  PubMed  Google Scholar 

  29. Shah AR, Banerjee R. Effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on surfactant monolayers. Colloids Surf B: Biointerfaces. 2011;85:116–24.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Chinese Traditional Medicine Bureau of Zhejiang Province grant (2006C154), Science Technology Department of Zhejiang Province grant (2009F70017), and the analytical funding from Zhejiang University of Technology. The authors are grateful to Dr. Ximei Wu of the Zhejiang University School of Medicine for his technical help in liver histological sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subin Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Wu, J., Wang, H. et al. Liposomal Oxymatrine in Hepatic Fibrosis Treatment: Formulation, In Vitro and In Vivo Assessment. AAPS PharmSciTech 15, 620–629 (2014). https://doi.org/10.1208/s12249-014-0086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0086-y

KEY WORDS

Navigation