Skip to main content

Advertisement

Log in

Mixed Polyethylene Glycol-Modified Breviscapine-Loaded Solid Lipid Nanoparticles for Improved Brain Bioavailability: Preparation, Characterization, and In Vivo Cerebral Microdialysis Evaluation in Adult Sprague Dawley Rats

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Breviscapine is used in the treatment of ischemic cerebrovascular diseases, but it has a low bioavailability in the brain due to its poor physicochemical properties and the activity of P-glycoprotein efflux pumps located at the blood–brain barrier. In the present study, breviscapine-loaded solid lipid nanoparticles (SLN) coated with polyethylene glycol (PEG) derivatives were formulated and evaluated for their ability to enhance brain bioavailability. The SLNs were either coated with polyethylene glycol (40) (PEG-40) stearate alone (Bre-GBSLN-PS) or a mixture of PEG-40 stearate and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG2000 (DSPE-PEG2000) (Bre-GBSLN-PS-DSPE) and were characterized both in vitro and in vivo. The mean particle size, polydispersity index, and entrapment efficiency for Bre-GBSLN-PS and Bre-GBSLN-PS-DSPE were 21.60 ± 0.10 and 22.60 ± 0.70 nm, 0.27 ± 0.01 and 0.26 ± 0.04, and 46.89 ± 0.73% and 47.62 ± 1.86%, respectively. The brain pharmacokinetic parameters revealed that the brain bioavailability of breviscapine from the Bre-GBSLN-PS and Bre-GBSLN-PS-DSPE was significantly enhanced (p < 0.01) with the area under concentration–time curve (AUC) of 1.59 ± 0.39 and 1.42 ± 0.58 μg h/mL of breviscapine, respectively, in comparison to 0.11 ± 0.02 μg h/mL from the commercial breviscapine injection. The ratios of the brain AUC for scutellarin in comparison with the plasma scutellarin AUC for commercial breviscapine injection, Bre-GBSLN-PS, and Bre-GBSLN-PS-DSPE were 0.66%, 2.82%, and 4.51%, respectively. These results showed that though both SLN formulations increased brain uptake of breviscapine, Bre-GBSLN-PS-DSPE which was coated with a binary combination of PEG-40 stearate and DSPE-PEG2000 had a better brain bioavailability than Bre-GBSLN-PS. Thus, the coating of SLNs with the appropriate PEG derivative combination could improve brain bioavailability of breviscapine and can be a promising tool for brain drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang M, Xie C, Cai RL, Li XH, Luo XZ, Qi Y. Studies on antioxidant activities of breviscapine in the cell-free system. Am J Chinese Med. 2008;36(6):1199–207.

    Article  CAS  Google Scholar 

  2. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001;53(1):135–59.

    PubMed  CAS  Google Scholar 

  3. Cao W, Liu W, Wu T, Zhong D, Liu G. Dengzhanhua preparations for acute cerebral infarction. Cochrane Database Syst Rev. 2008;4, CD005568. doi:10.1002/14651858.CD005568.pub2.

    PubMed  Google Scholar 

  4. Qian L, Shen M, Tang H, Tang Y, Zhang L, Fu Y, et al. Synthesis and protective effect of scutellarein on focal cerebral ischemia/reperfusion in rats. Molecules. 2012;17(9):10667–74. doi:10.3390/molecules170910667.

    Article  PubMed  CAS  Google Scholar 

  5. Lv W, Guo J, Li J, Huang L, Ping Q. Distribution of liposomal breviscapine in brain following intravenous injection in rats. Int J Pharm. 2005;306(1–2):99–106. doi:10.1016/j.ijpharm.2005.09.012.

    Article  PubMed  CAS  Google Scholar 

  6. Sun H, Dai H, Shaik N, Elmquist WF. Drug efflux transporters in the CNS. Adv Drug Deliv Rev. 2003;55(1):83–105.

    Article  PubMed  CAS  Google Scholar 

  7. De Boer AG, Breimer DD. The blood–brain barrier: clinical implications for drug delivery to the brain. J R Coll Physicians Lond. 1994;28(6):502–6.

    PubMed  Google Scholar 

  8. Schinkel AH. P-glycoprotein, a gatekeeper in the blood–brain barrier. Adv Drug Deliv Rev. 1999;36(2–3):179–94.

    Article  PubMed  CAS  Google Scholar 

  9. Liu M, Li H, Luo G, Liu Q, Wang Y. Pharmacokinetics and biodistribution of surface modification polymeric nanoparticles. Arch Pharm Res. 2008;31(4):547–54. doi:10.1007/s12272-001-1191-8.

    Article  PubMed  CAS  Google Scholar 

  10. She Z-Y, Ke X, Ping Q, Xu B-H, Chen B. Preparation of breviscapine nanosuspension and its pharmacokinetic behavior in rats. Chin J Nat Med. 2007;5(1):50–5.

    CAS  Google Scholar 

  11. Dingler A, Runge S, Muller RH. SLN (solid lipid nanoparticles) as drug carrier for an IV administration of poorly water soluble drugs. Eur J Pharm Sci. 1996;4(1001):132. doi:10.1016/s0928-0987(97)86382-8.

    Article  Google Scholar 

  12. Silva GA. Nanotechnology approaches to crossing the blood–brain barrier and drug delivery to the CNS. BMC Neurosci. 2008;9 Suppl 3:S4. doi:10.1186/1471-2202-9-S3-S4.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Madan J, Pandey RS, Jain V, Katare OP, Chandra R, Katyal A. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine. 2013;9(4):492–503. doi:10.1016/j.nano.2012.10.003.

    Article  PubMed  CAS  Google Scholar 

  14. Wang SW, Monagle J, McNulty C, Putnam D, Chen H. Determination of P-glycoprotein inhibition by excipients and their combinations using an integrated high-throughput process. J Pharm Sci. 2004;93(11):2755–67. doi:10.1002/jps.20183.

    Article  PubMed  CAS  Google Scholar 

  15. Zhu S, Huang R, Hong M, Jiang Y, Hu Z, Liu C, et al. Effects of polyoxyethylene (40) stearate on the activity of P-glycoprotein and cytochrome P450. Eur J Pharm Sci. 2009;37(5):573–80. doi:10.1016/j.ejps.2009.05.001.

    Article  PubMed  CAS  Google Scholar 

  16. Sawchuk RJ, Elmquist WF. Microdialysis in the study of drug transporters in the CNS. Adv Drug Deliv Rev. 2000;45(2–3):295–307.

    Article  PubMed  CAS  Google Scholar 

  17. Subedi RK, Kang KW, Choi HK. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci. 2009;37(3–4):508–13. doi:10.1016/j.ejps.2009.04.008.

    Article  PubMed  CAS  Google Scholar 

  18. Oyewumi MO, Mumper RJ. Gadolinium-loaded nanoparticles engineered from microemulsion templates. Drug Dev Ind Pharm. 2002;28(3):317–28. doi:10.1081/ddc-120002847.

    Article  PubMed  CAS  Google Scholar 

  19. Yue PF, Lu XY, Zhang ZZ, Yuan HL, Zhu WF, Zheng Q, et al. The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion. AAPS PharmSciTech. 2009;10(2):376–83. doi:10.1208/s12249-009-9216-3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Shimada K, Miyagishima A, Sadzuka Y, Nozawa Y, Mochizuki Y, Ohshima H, et al. Determination of the thickness of the fixed aqueous layer around polyethyleneglycol-coated liposomes. J Drug Target. 1995;3(4):283–9. doi:10.3109/10611869509015957.

    Article  PubMed  CAS  Google Scholar 

  21. Peracchia MT, Vauthier C, Passirani C, Couvreur P, Labarre D. Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Life Sci. 1997;61(7):749–61.

    Article  PubMed  CAS  Google Scholar 

  22. Litman T, Zeuthen T, Skovsgaard T, Stein WD. Structure-activity relationships of P-glycoprotein interacting drugs: kinetic characterization of their effects on ATPase activity. Biochim Biophys Acta. 1997;1361(2):159–68.

    Article  PubMed  CAS  Google Scholar 

  23. Lonnroth P, Jansson PA, Smith U. A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol. 1987;253(2 Pt 1):E228–31.

    PubMed  CAS  Google Scholar 

  24. Wang Y, Wong SL, Sawchuk RJ. Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus. Pharm Res. 1993;10(10):1411–9.

    Article  PubMed  CAS  Google Scholar 

  25. Zhong D, Yang B, Chen X, Li K, Xu J. Determination of scutellarin in rat plasma by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;796(2):439–44.

    Article  PubMed  CAS  Google Scholar 

  26. Burra M, Jukanti R, Janga KY, Sunkavalli S, Velpula A, Ampati S, et al. Enhanced intestinal absorption and bioavailability of raloxifene hydrochloride via lyophilized solid lipid nanoparticles. Adv Powder Technol. 2013;24(1):393–402. doi:10.1016/j.apt.2012.09.002.

    Article  CAS  Google Scholar 

  27. Li S, Ji Z, Zou M, Nie X, Shi Y, Cheng G. Preparation, characterization, pharmacokinetics and tissue distribution of solid lipid nanoparticles loaded with tetrandrine. AAPS PharmSciTech. 2011;12(3):1011–8. doi:10.1208/s12249-011-9665-3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today. 2008;13(23–24):1099–106.

    Article  PubMed  CAS  Google Scholar 

  29. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.

    Article  PubMed  CAS  Google Scholar 

  30. Peltonen L, Aitta J, Hyvonen S, Karjalainen M, Hirvonen J. Improved entrapment efficiency of hydrophilic drug substance during nanoprecipitation of poly(l)lactide nanoparticles. AAPS PharmSciTech. 2004;5(1):E16. doi:10.1208/pt050116.

    Article  PubMed  Google Scholar 

  31. Cao F, Guo JX, Ping QN, Liao ZG. Prodrugs of scutellarin: ethyl, benzyl and N,N-diethylglycolamide ester synthesis, physicochemical properties, intestinal metabolism and oral bioavailability in the rats. Eur J Pharm Sci. 2006;29(5):385–93. doi:10.1016/j.ejps.2006.07.007.

    Article  PubMed  CAS  Google Scholar 

  32. Tsai MJ, Huang YB, Wu PC, Fu YS, Kao YR, Fang JY, et al. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations. J Pharm Sci. 2011;100(2):547–57. doi:10.1002/jps.22285.

    Article  PubMed  CAS  Google Scholar 

  33. Souto EB, Muller RH. Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization. J Microencapsul. 2006;23(4):377–88. doi:10.1080/02652040500435295.

    Article  PubMed  CAS  Google Scholar 

  34. Dong X, Mattingly CA, Tseng MT, Cho MJ, Liu Y, Adams VR, et al. Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res. 2009;69(9):3918–26. doi:10.1158/0008-5472.can-08-2747.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Kopecka J, Salzano G, Campia I, Lusa S, Ghigo D, De Rosa G, et al. Insights in the chemical components of liposomes responsible for P-glycoprotein inhibition. Nanomedicine. 2013. doi:10.1016/j.nano.2013.06.013.

    PubMed  Google Scholar 

  36. Cauda V, Argyo C, Bein T. Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem. 2010;20(39):8693–9.

    Article  CAS  Google Scholar 

  37. Sugiyama I, Sadzuka Y. Characterization of novel mixed polyethyleneglycol modified liposomes. Biol Pharm Bull. 2007;30(1):208–11.

    Article  PubMed  CAS  Google Scholar 

  38. Shono Y, Nishihara H, Matsuda Y, Furukawa S, Okada N, Fujita T, et al. Modulation of intestinal P-glycoprotein function by cremophor EL and other surfactants by an in vitro diffusion chamber method using the isolated rat intestinal membranes. J Pharm Sci. 2004;93(4):877–85. doi:10.1002/jps.20017.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (81001645), Program for New Century Excellent Talents in University (NCET-12-1068), Tianjin Natural Science Foundation (12JCYBJC18700), and the National Key Technology Research and Development Program of China (2012ZX09304007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Liu.

Additional information

Zhidong Liu and Chukwunweike Ikechukwu Okeke contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Okeke, C.I., Zhang, L. et al. Mixed Polyethylene Glycol-Modified Breviscapine-Loaded Solid Lipid Nanoparticles for Improved Brain Bioavailability: Preparation, Characterization, and In Vivo Cerebral Microdialysis Evaluation in Adult Sprague Dawley Rats. AAPS PharmSciTech 15, 483–496 (2014). https://doi.org/10.1208/s12249-014-0080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0080-4

KEY WORDS

Navigation