Skip to main content

Advertisement

Log in

A Comparative Study of Orally Delivered PBCA and ApoE Coupled BSA Nanoparticles for Brain Targeting of Sumatriptan Succinate in Therapeutic Management of Migraine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The present investigation aimed at brain targeting of sumatriptan succinate (SS) for its optimal therapeutic effect in migraine through nanoparticulate drug delivery system using poly (butyl cyanoacrylate) (PBCA) and bovine serum albumin linked with apolipoprotein E3 (BSA-ApoE).

Method

The study involved formulation optimization of PBCA nanoparticles (NPs) using central composite design for achieving minimum particle size, maximum entrapment efficiency along with sustained drug release. SS incorporated in BSA-ApoE NPs (S-AA-NP) were prepared by desolvation technique and compared with SS loaded polysorbate 80 coated optimized PBCA NPs (FPopt) in terms of their brain uptake potential, upon oral administration in male Wistar rats. The NPs were characterized by FTIR, thermal, powder XRD and TEM analysis.

Results

The in vivo studies of FPopt and S-AA-NP on male Wistar rats demonstrated a fairly high brain/plasma drug ratio of 9.45 and 12.67 respectively 2 h post oral drug administration. The behavioural studies on male Swiss albino mice affirmed the enhanced anti-migraine potential of S-AA-NP than FPopt (P < 0.001).

Conclusion

The results of this work, therefore, indicate that BSA-ApoE NPs are significantly better than polysorbate 80 coated PBCA NPs for brain targeting of SS (P < 0.05) and also offer an improved therapeutic strategy for migraine management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AA-NP:

Dummy Apolipoprotein E coupled bovine serum albumin nanoparticles (without drug)

ApoE:

Apolipoprotein E

BBB:

Blood Brain Barrier

BSA:

Bovine Serum Albumin

BSA-ApoE:

Bovine Serum Albumin covalently linked with Apolipoprotein E

DSC:

Differential Scanning Calorimetry

FCopt :

Sumatriptan succinate loaded polysorbate 80 coated chitosan solid lipid nanoparticles

FPopt :

Sumatriptan succinate loaded polysorbate 80 coated optimized Poly (butyl cyanoacrylate) nanoparticles

FTIR:

Fourier-Transform Infrared Spectroscopy

HPLC:

High-Performance Liquid Chromatography

mmol:

Millimoles

nBCA:

n-Butyl-2-cyanoacrylate

NPs:

Nanoparticles

PBCA:

Poly (butyl cyanoacrylate) (PBCA)

pXRD:

Powder X-Ray Diffraction

S-AA-NP:

Sumatriptan succinate loaded apolipoprotein E coupled BSA nanoparticles

SLN:

Solid lipid nanoparticles

SS:

Sumatriptan Succinate

TEM:

Transmission Electron Microscopy

TGA:

Thermogravimetric analysis

REFERENCES

  1. Lipton RB, Silberstein SD, Stewart WF. An update on the epidemiology of migraine. Headache. 1994;34:319–28.

    Article  CAS  PubMed  Google Scholar 

  2. Shapiro RE, Goadsby PJ. The long drought: the dearth of public funding for headache research. Cephalalgia. 2007;27:991–4.

    Article  CAS  PubMed  Google Scholar 

  3. Girotra P, Singh SK, Saini D. Disentangling the intricacies of migraine: a review. CNS Neurol Disord Drug Targets. 2014;13:776–91.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrari MD, Saxena PR. Clinical effects and mechanism of action of sumatriptan in migraine. Clin Neurol Neurosurg. 1992;94:73–7.

    Article  Google Scholar 

  5. Goadsby PJ, Edvinsson L. Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90. Headache. 1994;34:394–9.

    Article  CAS  PubMed  Google Scholar 

  6. Edvinsson L, Tfelt-Hansen P. The blood brain barrier in migraine treatment. Cephalalgia. 2008;24:1245–58.

    Article  Google Scholar 

  7. Nagpal K, Singh SK, Mishra DN. Drug targeting to brain: a systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB. Expert Opin Drug Deliv. 2013;10:927–55.

    Article  CAS  PubMed  Google Scholar 

  8. Alonso MJ, Csaba NS. Nanostructured biomaterials for overcoming biological barriers. RSC Publishing; 2012.

  9. Gao S, Xu Y, Asghar S, Chen M, Zou L, Eltayeb S, et al. Poly butylcyanoacrylate nanocarriers as promising targeted drug delivery systems. J Drug Target. 2015;4:1–16.

    CAS  Google Scholar 

  10. Joshi SA, Chavhan SS, Sawant KK. Rivastigmine-loaded PLGA and PBCA nanoparticles: reparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm. 2010;76:189–99.

    Article  CAS  PubMed  Google Scholar 

  11. Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev. 2014;71:2–14.

    Article  CAS  PubMed  Google Scholar 

  12. Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001;47:65–81.

    Article  CAS  PubMed  Google Scholar 

  13. Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J Drug Target. 2002;10:317–25.

    Article  CAS  PubMed  Google Scholar 

  14. Ramge P, Unger RE, Oltrogge JB, Zenker D, Begley D, Kreuter J, et al. Polysorbate 80-coating enhances uptake of polybutylcyano-acrylate (PBCA)- nanoparticles by human, bovine and murine primary brain capillary endothelial cells. Eur J Neurosci. 2000;12:1931–40.

    Article  CAS  PubMed  Google Scholar 

  15. Alyautdin R, Gothier D, Petrov V, Kharkevich D, Kreuter J. Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly (butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 1995;41:44–8.

    CAS  Google Scholar 

  16. Yu Z, Yu M, Zhang Z, Hong G, Xiong Q. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res Lett. 2014;9:1–7.

    Article  Google Scholar 

  17. Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M, et al. Covalent linkage of Apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther. 2006;317:1246–53.

    Article  CAS  PubMed  Google Scholar 

  18. Hoffmann M, Scharnagl H, Panagiotou E, Banghard W, Wieland H, Marz W. Diminished LDL receptor and high heparin binding of apolipoprotein E2 Sendai associated with lipoprotein glomerulopathy. J Am Soc Nephrol. 2001;12:524–30.

    CAS  PubMed  Google Scholar 

  19. Ribalta J, Vallve JC, Girona J, Masana L. Apolipoprotein and apolipoprotein receptor genes, blood lipids and disease. Curr Opin Clin Nutr Metab Care. 2003;6:177–87.

    Article  CAS  PubMed  Google Scholar 

  20. Wu LS. Product testing with consumers for research guidance. ASTM Int. 1989;1035:48–50.

    Google Scholar 

  21. Nagpal K, Singh SK, Mishra DN. Minocycline encapsulated chitosan nanoparticles for central antinociceptive activity. Int J Biol Macromol. 2015;72:131–5.

    Article  CAS  PubMed  Google Scholar 

  22. Girotra PH, Singh SK, Kumar P. Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential. Int J Biol Macromol. 2015;81:467–76.

    Article  Google Scholar 

  23. Weber C, Kreuter J, Langer K. Desolvation process and surface characteristics of HSA-nanoparticles. Int J Pharm. 2000;196:197–200.

    Article  CAS  PubMed  Google Scholar 

  24. Langer K, Balthasar S, Vogel V, Dinauer N, Von Briesen H, Schubert D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm. 2003;257:169–80.

    Article  CAS  PubMed  Google Scholar 

  25. Yu Z, Kastenmuller G, He Y, Belcredi P, Moller G, Prehn C, et al. Differences between human plasma and serum metabolite profiles. PLoS One. 2011;6:e21230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Girotra PH, Singh SK, Kumar G. Reversed phase HPLC method development and validation for the quantification of sumatriptan succinate nanoparticles in rat plasma and brain homogenate. Inventi Impact: Biomed Anal. 2016;1:1–5.

    Google Scholar 

  27. Girotra P, Singh SK, Kumar G. Development of Zolmitriptan loaded PLGA/poloxamer nanoparticles using quality by design approach for migraine management. Int J Biol Macromol. 2016;85:92–101.

    Article  CAS  PubMed  Google Scholar 

  28. Patila S, Sandberg A, Heckert E, Self W, Sea S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28:4600–7.

    Article  Google Scholar 

  29. Ritger PL, Peppas NA. A simple equation for description of solute release II: Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.

    Article  CAS  Google Scholar 

  30. Nagpal K, Singh SK, Mishra DN. Formulation, optimization, in vivo pharmacokinetic behavioural and biochemical estimations of minocycline loaded chitosan nanoparticles for enhanced brain uptake. Chem Pharm Bull. 2013;61:258–72.

    Article  CAS  PubMed  Google Scholar 

  31. Alam S, Khan ZI, Mustafa G, Kumar M, Islam F, Bhatnagar A, et al. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. Int J Nanomedicine. 2012;7:5705–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Culot M, Fabulas-da Costa A, Sevin E, Szorath E, Martinsson S, Renftel M, et al. A simple method for assessing free brain/free plasma ratios using an in vitro model of the blood brain barrier. PLoS ONE. 2013;8:e80634.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nikai T, Basbaum AI, Ahn AH. Profound reduction of somatic and visceral pain in mice by intrathecal administration of the anti-migraine drug, sumatriptan. Pain. 2008;139:533–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bartsch T, Knight YE, Goadsby PJ. Activation of 5-HT (1B/1D) receptor in the periaqueductal gray inhibits nociception. Ann Neurol. 2004;56:371–81.

    Article  CAS  PubMed  Google Scholar 

  35. Digre KB, Brennan KC. Shedding light on photophobia. J Neuroophthalmol. 2012;32:68–81.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Okamoto K, Thompson R, Tashiro A, Chang Z, Bereiter DA. Bright light produces Fos-positive neurons in caudal trigeminal brainstem. Neuroscience. 2009;160:858–64.

    Article  CAS  PubMed  Google Scholar 

  37. Kaube H, Hoskin KL, Goadsby PJ. Inhibition by sumatriptan of central trigeminal neurones only after blood–brain barrier disruption. Br J Pharmacol. 1993;109:788–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vijayan L, Bansal D, Ray SB. Nimodipine down-regulates CGRP expression in the rat trigeminal nucleus caudalis. Indian J Exp Biol. 2012;50:320–4.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors acknowledge the Coordinator, DST FIST, Department of Pharmaceutical Sciences (GJU S&T, Hisar) and SAIF, Panjab University (Chandigarh) for providing particle size analysis and TEM analysis facility respectively. The authors are thankful to Department of Science & Technology, New Delhi for providing DST-INSPIRE fellowship as financial assistance. The contribution of Dr. Tikva Vogel in providing the gift sample of ApoE is gratefully acknowledged. The authors also wish to thank Dr. A.K. Mohanty, (Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India) for kindly helping in the thiolation of apolipoprotein E. The authors report no conflict of interest and are solely responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girotra, P., Singh, S.K. A Comparative Study of Orally Delivered PBCA and ApoE Coupled BSA Nanoparticles for Brain Targeting of Sumatriptan Succinate in Therapeutic Management of Migraine. Pharm Res 33, 1682–1695 (2016). https://doi.org/10.1007/s11095-016-1910-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1910-8

KEY WORDS

Navigation