Skip to main content

Advertisement

Log in

Statistical Design for Formulation Optimization of Hydrocortisone Butyrate-Loaded PLGA Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this investigation was to develop hydrocortisone butyrate (HB)-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) with ideal encapsulation efficiency (EE), particle size, and drug loading (DL) under emulsion solvent evaporation technique utilizing various experimental statistical design modules. Experimental designs were used to investigate specific effects of independent variables during preparation of HB-loaded PLGA NP and corresponding responses in optimizing the formulation. Plackett–Burman design for independent variables was first conducted to prescreen various formulation and process variables during the development of NP. Selected primary variables were further optimized by central composite design. This process leads to an optimum formulation with desired EE, particle size, and DL. Contour plots and response surface curves display visual diagrammatic relationships between the experimental responses and input variables. The concentration of PLGA, drug, and polyvinyl alcohol and sonication time were the critical factors influencing the responses analyzed. Optimized formulation showed EE of 90.6%, particle size of 164.3 nm, and DL of 64.35%. This study demonstrates that statistical experimental design methodology can optimize the formulation and process variables to achieve favorable responses for HB-loaded NP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gambrill J, Miller L. Topical corticosteroids. Aust Fam Physician. 1984;13(1):45–7.

    CAS  PubMed  Google Scholar 

  2. Lundberg IE, Grundtman C, Larsson E, Klareskog L. Corticosteroids—from an idea to clinical use. Best Pract Res Clin Rheumatol. 2004;18(1):7–19.

    Article  CAS  PubMed  Google Scholar 

  3. Oren D, Nulman I, Makhija M, Ito S, Koren G. Using corticosteroids during pregnancy. Are topical, inhaled, or systemic agents associated with risk? Can Fam Physician. 2004;50:1083–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Fini A, Bergamante V, Ceschel GC, Ronchi C, De Moraes CA. Control of transdermal permeation of hydrocortisone acetate from hydrophilic and lipophilic formulations. AAPS PharmSciTech. 2008;9(3):762–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Griffiths CE, Van Leent EJ, Gilbert M, Traulsen J, Cipamyflline Study Group. Randomized comparison of the type 4 phosphodiesterase inhibitor cipamfylline cream, cream vehicle and hydrocortisone 17-butyrate cream for the treatment of atopic dermatitis. Br J Dermatol. 2002;147(2):299–307.

    Article  CAS  PubMed  Google Scholar 

  6. Hydrocortisone eye drops and ointment. http://www.netdoctor.co.uk/eyes/medicines/hydrocortisone-eye-drops.html.

  7. Laval J. Use of hydrocortisone (hydrocortone) acetate in ophthalmology. AMA Arch Ophthalmol. 1953;50(3):299–302.

    Article  CAS  PubMed  Google Scholar 

  8. Shimo T, Yamazaki M, Noguchi Y, Mukawa A, Kato H, Ito Y. Irritation test of dexamethasone valerate (DV-17) and other steroid ointments in rabbits. Skin and eye primary irritation tests, and skin cumulative irritation test. J Toxicol Sci. 1982;7 Suppl 1:1–13. Japanese.

    Article  CAS  PubMed  Google Scholar 

  9. Komatsu A, Ohashi K, Oba H, Kakehashi T, Mizushima Y, Shirasawa E, et al. Application of lipid microsphere drug delivery system to steroidal ophthalmic preparation. Jpn J Ophthalmol. 1988;32(1):41–3.

    CAS  PubMed  Google Scholar 

  10. Wilkinson SM, English JS. Hydrocortisone sensitivity: a prospective study of the value of tixocortol pivalate and hydrocortisone acetate as patch test markers. Contact Dermatitis. 1991;25(2):132–3.

    Article  CAS  PubMed  Google Scholar 

  11. Umer S. Bioavailability of hydrocortisone acetate from ophthalmic ointments. Acta Pol Pharm. 1994;51(1):39–43.

    CAS  PubMed  Google Scholar 

  12. Sejpal P, Scott-Weideman J. Surgical intervention of steroid-induced ocular hypertension from Ozurdex. Optom Vis Sci. 2013;90(1):e24–30.

    Article  PubMed  Google Scholar 

  13. Bollinger K, Kim J, Lowder CY, Kaiser PK, Smith SD. Intraocular pressure outcome of patients with fluocinolone acetonide intravitreal implant for noninfectious uveitis. Ophthalmology. 2011;118(10):1927–31.

    Article  PubMed  Google Scholar 

  14. Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28(1):5–24.

    Article  PubMed  Google Scholar 

  15. Mei L, Sun H, Jin X, Zhu D, Sun R, Zhang M, et al. Modified paclitaxel-loaded nanoparticles for inhibition of hyperplasia in a rabbit arterial balloon injury model. Pharm Res. 2007;24(5):955–62.

    Article  CAS  PubMed  Google Scholar 

  16. Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using systematic “design of experiments.” Part I: fundamental aspects. Crit Rev Ther Drug Carrier Syst. 2005;22(1):27–105.

    Article  CAS  PubMed  Google Scholar 

  17. Singh B, Dahiya M, Saharan V, Ahuja N. Optimizing drug delivery systems using systematic “design of experiments.” Part II: retrospect and prospects. Crit Rev Ther Drug Carrier Syst. 2005;22(3):215–94.

    Article  CAS  PubMed  Google Scholar 

  18. Kenari HS, Alinejad Z, Imani M, Nodehi A. Effective parameters in determining cross-linked dextran microsphere characteristics: screening by Plackett–Burman design-of-experiments. J Microencapsul. 2013;30(6):599–611.

    Article  CAS  PubMed  Google Scholar 

  19. Tasharrofi N, Adrangi S, Fazeli M, Rastegar H, Khoshayand MR, Faramarzi MA. Optimization of chitinase production by Bacillus pumilus using Plackett–Burman design and response surface methodology. Iran J Pharm Res. 2011;10(4):759–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Rambali B, Baert L, Thoné D, Massart DL. Using experimental design to optimize the process parameters in fluidized bed granulation. Drug Dev Ind Pharm. 2001;27(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  21. Hibbert DB. Experimental design in chromatography: a tutorial review. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;910:2–13.

    Article  CAS  PubMed  Google Scholar 

  22. Antony J. Design of experiments for engineers and scientists. 1st ed. Amsterdam: Elsevier; 2003.

    Google Scholar 

  23. Keum CG, Noh YW, Baek JS, Lim JH, Hwang CJ, Na YG, et al. Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid. Int J Nanomedicine. 2011;6:2225–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Box GEP, Hunter JS, Hunter WG. Statistics for experimenters: design, innovation, and discovery. 2nd ed. New York: Wiley; 2005.

    Google Scholar 

  25. Rekab K, Shaikh M. Statistical design of experiments with engineering applications. Florida: Taylor & Francis; 2005.

    Book  Google Scholar 

  26. Kang LS, Trinh TK. Application of response surface method as an experimental design to optimize coagulation tests. Environ Eng Res. 2010;15(2):63–70.

    Article  Google Scholar 

  27. Montgomery DC. Design and analysis of experiments. 4th ed. New York: Wiley; 1997.

    Google Scholar 

  28. McCarron PA, Woolfson AD, Keating SM. Response surface methodology as a predictive tool for determining the effects of preparation conditions on the physicochemical properties of poly(isobutylcyanoacrylate) nanoparticles. Int J Pharm. 1999;193(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  29. Analytical Methods Committee. AMCTB No 55. Experimental design and optimisation (4): Plackett–Burman designs. Anal Methods. 2013;5:1901–3.

    Article  Google Scholar 

  30. Demirel M, Kayan B. Application of response surface methodology and central composite design for the optimization of textile dye degradation by wet air oxidation. Int J Ind Chem. 2012;3:24.

    Article  Google Scholar 

  31. Montegometry DC. Introduction to factorial designs. Design and analysis of experiments. New York: Wiley; 2004. p. 392–426.

    Google Scholar 

  32. Montgometry DC. Design and analysis of experiments. 7th ed. New York: Wiley; 2008.

    Google Scholar 

  33. Akhnazarova S, Kafaro V. Experiment optimization in chemistry and chemical engineering. Moscow: Mir House Publicaions; 1982.

    Google Scholar 

  34. Box GEP, Wilson KB. On the experimental attainment of optimum conditions. J R Stat Soc B. 1951;B13:1–45.

    Google Scholar 

  35. Bryc W. The normal distribution. Characterization with applications. Lecture notes in statistics, vol. 100. New York: Springer; 1995.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Missouri Life Sciences Research grant (no. MLSRB0017025) and National Institutes of Health grants (R01 EY 10659-12).

Author Disclosure Statement

No completing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashim K. Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Patel, S., Sheng, Y. et al. Statistical Design for Formulation Optimization of Hydrocortisone Butyrate-Loaded PLGA Nanoparticles. AAPS PharmSciTech 15, 569–587 (2014). https://doi.org/10.1208/s12249-014-0072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0072-4

KEY WORDS

Navigation