Skip to main content

Advertisement

Log in

Modified Paclitaxel-loaded Nanoparticles for Inhibition of Hyperplasia in a Rabbit Arterial Balloon Injury Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study tested the possibility of localized intravascular infusion of positive charged paclitaxel-loaded nanoparticles (NPs) to better prevent neointimal formation in a rabbit carotid artery injury model.

Materials and Methods

NPs were prepared by oil–water emulsion/solvent evaporation technique using biodegradable poly (lactide-co-glycolide) (PLGA). A cationic surfactant, didodecyldimethylammonium bromide (DMAB), was absorbed on the NP surface by electrostatic attraction between positive and negative charges. NPs were characterized in such aspects as size, surface morphology, surface charges as well as in vitro drug release profile. Balloon injured rabbit carotid arteries were treated with single infusion of paclitaxel-loaded NP suspension and observed for 28 days. The inhibitory effects of NPs on neointima formation were evaluated as end-point.

Results

NPs showed spherical shape with a diameter ranging from 200 to 500 nm. Negatively charged PLGA NPs shifted to positive after the DMAB modification. The in vitro drug release profile showed a biphasic release pattern. Morphometric analyses on the retrieved artery samples revealed that the inhibitory effect of intima proliferation was dose-dependent. At a concentration of 30 mg ml−1, NP infusion completely inhibited intima proliferation in a rabbit vascular injury model.

Conclusions

Paclitaxel-loaded NPs with DMAB modification were proven an effective means of inhibiting proliferative response to vascular injury in a rabbit model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCA:

common carotid artery

DCM:

dichloromethane

DES:

drug-eluting stent

DMAB:

didodecyldimethylammonium bromide

EE:

entrapment efficiency

HE:

hematoxylin & eosin

HPLC:

high performance liquid chromatography

NP:

nanoparticle

PLGA:

Poly(dl-lactide-co-glycolide)

PVA:

polyvinyl alcohol

SEM:

scanning electron microscopy

TEM:

transmission electronic microscopy

VSMC:

vascular smooth muscle cell

References

  1. J. A. Bittl. Advances in coronary angioplasty. N. Engl. J. Med. 335:1290–1302 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. U. Westedt, L. Barbu-Tudoran, A. K. Schaper, M. Kalinowsk, H. Alfke, and T. Kissel. Deposition of nanoparticles in the arterial vessel by porous balloon catheters: localization by confocal laser scanning microscopy and transmission electron microscopy. AAPS PharmSci in vitro(4):1–6 (2004).

    Google Scholar 

  3. G. S. Mintz, J. J. Popma, A. D. Pichard, K. M. Kent, L. F. Satler, C. Wong, M. K. Hong, J. A. Kovach, and M. B. Leon. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation 94(1):35–43 (1996).

    PubMed  CAS  Google Scholar 

  4. T. Kimura, S. Kaburagi, T. Tamura, H. Yokoi, Y. Nakagawa, H. Yokoi, N Hamasaki, H. Nosaka, M. Nobuyoshi, G. S. Mintz, J. J. Popma, and M. B. Leon. Remodeling of human coronary arteries undergoing coronary angioplasty or atherectomy. Circulation 96(2):475–483 (1997).

    PubMed  CAS  Google Scholar 

  5. H. Hanke, T. Strohschneider, M. Oberhoff, E. Betz, and K. R. Karsch. Time course of smooth muscle cell proliferation in the intima and media of arteries following experimental angioplasty. Circ. Res. 67(3):651–659 (1990).

    PubMed  CAS  Google Scholar 

  6. Y. Shi, J. E. O’Brien, L. Ala-Kokko, W. Chung, J. D. Mannion, and A. Zalewski. Origin of extracellular matrix synthesis during coronary repair. Circulation 95(4):997–1006 (1997).

    PubMed  CAS  Google Scholar 

  7. C. Hehrlein, C. Gollan, K. Donges, J. Metz, R. Riessen, P. Fehsenfeld, E. von Hodenberg, and W. Kubler. Low -dose radioactive endovascular stents prevent smooth muscle cell proliferation and neointimal hyperplasia in rabbits. Circulation 92(6):1570–1575 (1995).

    PubMed  CAS  Google Scholar 

  8. E. Regar, G. Sianos, and P. W. Serruys. Stent development and local drug delivery. Br. Med. Bull. 59(1):227–248 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. E. Grube, S. Silber, K. E. Hauptmann, R. Mueller, L. Buellesfeld, U. Gerckens, and M. E. Russell. TAXUS I: six- and 12-month results from a randomized, double-blind trial on a slow-release paclitaxeleluting stent for de novo coronary lesions. Circulation 107:38–42 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. S. J. Park, W. H. Shim, D. S. Ho, A. E. Raizner, S. W. Park, M. K. Hong, C. W. Lee, D. Choi, Y. Jang, R. Lam, N. J. Weissman, and G. S. Mintz. A paclitaxel-eluting stent for the prevention of coronary restenosis. N. Engl. J. Med. 348:1537–1545 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. J. W. Moses, M. B. Leon, J. J. Popma, P. J. Fitzgerald, D. R. Holmes, C. O’Shaughnessy, R. P. Caputo, D. J. Kereiakes, D. O. Williams, P. S. Teirstein, J. L. Jaeger, and R. E. Kuntz. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349:1315–1323 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. S. Banai, M. Chorny, S. D. Gertz, I. Fishbein, J. Gao, L. Perez, G. Lazarovichi, A. Gazit, A. Levitzki, and G. Golomb. Locally delivered nanoencapsulated tyrphostin (AGL-2043) reduces neointima formation in balloon-injured rat carotid and stented porcine coronary arteries. Biomaterials 26:4898–4901 (2005).

    Article  CAS  Google Scholar 

  13. H. Wolinsky and S. N. Thung. Use of a perforated balloon catheter to deliver concentrated heparin into the wall of the normal canine artery. J. Am. Coll. Cardiol. 15(2):475–481 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. B. Scheller, U. Speck, C. Abramjuk, U. Bernhardt, M. Böhm, and G. Nickenig. Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation 110(7):810–814 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. D. W. Muller, E. J. Topol, G. D. Abrams, K. P. Gallagher, and S. G. Ellis. Intramural methotrexate therapy for the prevention of neointimal thickening after balloon angioplasty. J. Am. Coll. Cardiol. 20(2):460–466 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. T. L. Lambert, V. Dev, E. Rechavia, J. S. Forrester, F. Litvack, and N. L. Eigler. Localized arterial wall drug delivery from a polymer-coated removable metallic stent: kinetics, distribution, and bioactivity of forskolin. Circulation 90(2):1003–1011 (1994).

    PubMed  CAS  Google Scholar 

  17. F. Valero, M. Hamon, C. Fournier, T. Meurice, B. Flautre, E. Van Belle, J. M. Lablanche, B. Gosselin, C. Bauters, and M. Bertrand. Intramural injection of biodegradable microspheres as a local drug-delivery system to inhibit neointimal thickening in a rabbit model of balloon angioplasty. J. Cardiovasc. Pharmacol. 31(4):513–519 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. R. L. Wilensky, K. L. March, I. Gradus-Pizlo, D. Schauwecker, M. B. Michaels, J. Robinson, K. Carlson, and D. R. Hathaway. Regional and arterial localization of radioactive microparticles after local delivery by unsupported or supported porous balloon catheters. Am. Heart J. 129(5):852–859 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. L. A. Guzman, V. Labhasetwar, C. Song, Y. Jang, A. M. Lincoff, R. Levy, and E. J. Topol. Local intraluminal infusion of biodegradable polymeric nanoparticles: a novel approach for prolonged drug delivery after balloon angioplasty. Circulation 94:1441–1448 (1996).

    PubMed  CAS  Google Scholar 

  20. C. X. Song, V. Labhasetwar, H. Murphy, X. Qu, W. R. Humphrey, R. J. Shebuski, and R. J. Levy. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J. Control. Release 43:197–212 (1997).

    Article  Google Scholar 

  21. V. Labhasetwar, C. Song, and R. J. Levy. Nanoparticle drug delivery system for restenosis. Adv. Drug Deliv. Rev. 24:63–85 (1997).

    Article  CAS  Google Scholar 

  22. W. R. Humphrey, L. A. Erickson, C. A. Simmons, J. L. Northrup, D. G. Wishka, J. Morris, V. Labhasetwar, C. Song, R. J. Levy, and R. J. Shebuski. The effect of intramural delivery of polymeric nanoparticles loaded with the anti-proliferative 2-aminochromone U-86983 on neointimal hyperplasia development in balloon-injured porcine coronary. Adv. Drug Deliv. Rev. 24:87–108 (1997).

    Article  CAS  Google Scholar 

  23. C. Song, V. Labhasetwar, X. Cui, T. Underwood, and R. J. Levy. Arterial uptake of biodegradable nanoparticles for intravascular local drug delivery: results with an acute dog model. J. Control. Release 54(2):201–211 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. V. Labhasetwar, C. Song, W. Humphrey, R. Shebuski, and R. J. Levy. Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J. Pharm. Sci. 87(10):1229–1234 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. K. R. Kamath, J. J. Barry, and K. M. Miller. The Taxus™ drug-eluting stent: a new paradigm in controlled drug delivery. Adv. Drug Deliv. Rev. 58(3):412–436 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. D. W. Kim, J. S. Kwon, Y. G. Kim, M. S. Kim, G. S. Lee, T. J. Youn, and M. C. Cho. Novel oral formulation of paclitaxel inhibits neointimal hyperplasia in a rat carotid artery injury model. Circulation 109:1558–1563 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. T. K. Nasser, R. L. Wilensky, K. Mehdi, and K. L. March. Microparticle deposition in periarterial microvasculature and intramural dissections after porous balloon delivery into atherosclerotic vessels: quantitation and localization by confocal scanning laser microscopy. Am. Heart J. 131(5):892–898 (1996).

    Article  PubMed  CAS  Google Scholar 

  28. J. J. Rome, V. Shayani, M. Y. Flugelman, K. D. Newman, A. Farb, R. Virmani, and D. A. Dichek. Anatomic barriers influence the distribution of in vivo gene transfer into the arterial wall: modeling with microscopic tracer particles and verification with a recombinant adenoviral vector. Arterioscler. Thromb. 14:148–161 (1994).

    PubMed  CAS  Google Scholar 

  29. J. M. Anderson and M. S. Shive. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28:5–24 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. I. Gradus-Pizlo, R. L. Wilensky, K. L. March, N. Fineberg, M. Michaels, G. E. Sandusky, and D. R. Hathaway. Local delivery of biodegradable microparticles containing colchicine or a colchicine analogue: effects on restenosis and implications for catheter-based drug delivery. J. Am. Coll. Cardiol. 26(6):1549–1557 (1995).

    Article  PubMed  CAS  Google Scholar 

  31. V. Dev, N. Eigler, M. C. Fishbein, Y. Tian, A. Hickey, E. Rechavia, J. S. Forrester, and F. Litvack. Sustained local drug delivery to the arterial wall via biodegradable microspheres. Catheter. Cardiovasc. Diagn. 41(3):324–332 (1997).

    Article  CAS  Google Scholar 

  32. L. A. M. Rupert, D. Hoekstra, and B. F. N. Engberts. Fusogenic behavior of didodecyldimethylammonium bromide bilayer vesicles. J. Am. Chem. Soc. 107:2628–2631 (1985).

    Article  CAS  Google Scholar 

  33. H. Suh, B. Jeong, R. Rathi, and S. W. Kim. Regulation of smooth muscle cell proliferation using paclitaxel-loaded poly(ethyleneoxide)-poly(lactide/glycolide) nanospheres. J. Biomed. Mater. Res. 42:331–338 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. J. K. Jackson, K. C. Skinner, L. Burgess, T. Sun, W. L. Hunter, and H. M. Burt. Paclitaxel-loaded crosslinked hyaluronic acid films for the prevention of postsurgical adhesions. Pharm. Res. 19:411–417 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. N. Kunou, Y. Ogura, M. Hashizoe, Y. Honda, S. H. Hyon, and Y. Ikada. Controlled intraocular delivery of ganciclovir with use of biodegradable scleral implant in rabbits. J. Control. Release 37:143–150 (1995).

    Article  CAS  Google Scholar 

  36. C. G. Pitt, M. M. Gratzl, A. R. Jeffcoat, R. Zweidinger, and A. Schindler. Sustained drug delivery systems. II. Factors affecting release rates from poly(ɛ-caprolactone) and related biodegradable polymers. J. Pharm. Sci. 68:1534–1538 (1979).

    Article  PubMed  CAS  Google Scholar 

  37. M. S. Hora, R. K. Rana, J. H. Nunberg, T. R. Tice, R. M. Gilley, and M. E. Hudson. Release of human serum albumin from retinitis with intravitreal injection of liposome encapsulated poly(lactide-co-glycolide) microspheres. Pharm. Res. 7:1190–1194 (1990).

    Article  PubMed  CAS  Google Scholar 

  38. T. Yasukawa, H. Kimura, Y. Tabata, and Y. Ogura. Biodegradable scleral plugs for vitreoretinal drug delivery. Adv. Drug Deliv. Rev. 52:25–36 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. J. Panyam, M. M. Dali, S. K. Sahoo, W. Ma, S. S. Chakravarthi, G. L. Amidon, R. J. Levy, and V. Labhasetwar. Polymer degradation and in vitro release of a model protein from poly(d,l-lactide-co-glycolide) nano- and microparticles. J. Control. Release 92:173–187 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. L. Manil, J. Davin, C. Duchenne, C. Kubiak, J. Foidart, P. Couvreur, and P. Mahieu. Uptake of nanoparticles by rat glomerular mesangial cells in vivo and in vitro. Pharm. Res. 11:1160–1167 (1994).

    Article  PubMed  CAS  Google Scholar 

  41. J. J. Wright and L. Illum. Active targeting of microcapsules and microspheres to specific regions. In M. Donbrow (ed.), Microcapsules and Nanoparticles in Medicine and Pharmacy, CRC Press, Boca Raton, FL, 1992, pp. 282–293.

    Google Scholar 

  42. J. You, M. Kamihira, and S. Iijima. Surfactant-mediated gene transfer for animal cells. Cytotechnology 25:45–52 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Tianjin Natural Science Foundation project (023801311) and the NSFC of China (50473059) for funding this work. We thank Yongzhe Che (Medical College of Nankai University) for his direction and efforts in animal tests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongfan Sun or Cunxian Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, L., Sun, H., Jin, X. et al. Modified Paclitaxel-loaded Nanoparticles for Inhibition of Hyperplasia in a Rabbit Arterial Balloon Injury Model. Pharm Res 24, 955–962 (2007). https://doi.org/10.1007/s11095-006-9214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9214-z

Key words

Navigation