Skip to main content

Advertisement

Log in

25-Hydroxyvitamin D3-Loaded PLA Microspheres: In Vitro Characterization and Application in Diabetic Periodontitis Models

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study aimed at the preparation of a sustained-release 25-hydroxyvitamin D3 (25OHD) treatment for diabetic periodontitis, a known complication of diabetes. 25OHD-loaded polylactic acid (PLA) microspheres were prepared using oil-in-water emulsion–solvent evaporation method. The prepared microspheres exhibited intact surfaces, with average sizes ranging from 42.3 to 119.4 μm. The encapsulation efficiency ranged from 79.2% (w/w) to 88.5% (w/w), and the drug content was between 15.8% (w/w) and 17.8% (w/w). Drug release from the produced microspheres followed a near-to-zero-order release pattern and lasted over 10 weeks. In an in vitro model of diabetic periodontitis, the abnormal morphological changes and the decrease in the cell viability of bone marrow stromal cells could be effectively attenuated after the 25OHD-loaded microsphere application. Additionally, in a rat model of diabetic periodontitis, alveolar bone loss was inhibited and osteoid formation in the periodontium was promoted upon 25OHD-loaded microsphere treatment. In conclusion, 25OHD-loaded PLA microspheres may provide an effective approach for the treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. García-Hernández A, Arzate H, Gil-Chavarría I, Rojo R, Moreno-Fierros L. High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone. 2012;50:276–88.

    Article  PubMed  Google Scholar 

  2. O’Connell P, Taba M, Nomizo A, Foss Freitas M, Suaid F, Uyemura S, et al. Effects of periodontal therapy on glycemic control and inflammatory markers. J Periodontol. 2008;79:774–83.

    Article  PubMed  Google Scholar 

  3. Kim S, Kim K, Seo B, Koo K, Kim T, Seol Y, et al. Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. J Periodontol. 2009;80:1815–23.

    Article  PubMed  Google Scholar 

  4. Die L, Yan P, Jun Jiang Z, Min Hua T, Cai W, Xing L. Glycogen synthase kinase-3 beta inhibitor suppresses Porphyromonas gingivalis lipopolysaccharide-induced CD40 expression by inhibiting nuclear factor-kappa B activation in mouse osteoblasts. Mol Immunol. 2012;52:38–49.

    Article  CAS  PubMed  Google Scholar 

  5. Zhen D, Chen Y, Tang X. Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complications. 2010;24:334–44.

    Article  PubMed  Google Scholar 

  6. Gopalakrishnan V, Vignesh R, Arunakaran J, Aruldhas M, Srinivasan N. Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages. Biochem Cell Biol. 2006;84:93–101.

    Article  CAS  PubMed  Google Scholar 

  7. Mealey B, Ocampo G. Diabetes mellitus and periodontal disease. Periodontology. 2007;44:127–53.

    Article  Google Scholar 

  8. Venketaraman V, Lin A, Le A, Kachlany S, Connell N, Kaplan J. Both leukotoxin and poly-N-acetylglucosamine surface polysaccharide protect Aggregatibacter actinomycetemcomitans cells from macrophage killing. Microb Pathog. 2008;45:173–80.

    Article  CAS  PubMed  Google Scholar 

  9. Umeda J, Demuth DR, Ando E, Faveri M, Mayer M. Signaling transduction analysis in gingival epithelial cells after infection with Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol. 2012; 27:23–33.

    Google Scholar 

  10. Dienelt A, Zur Nieden N. Hyperglycemia impairs skeletogenesis from embryonic stem cells by affecting osteoblast and osteoclast differentiation. Stem Cells Dev. 2011;20:465–74.

    Article  CAS  PubMed  Google Scholar 

  11. Bas A, Demirci S, Yazihan N, Uney K, Ermis KE. Nerium oleander distillate improves fat and glucose metabolism in high-fat diet-fed streptozotocin-induced diabetic rats. Int J Endocrinol. 2012;201(2):947187.

    Google Scholar 

  12. Sharma A, Bharti S, Kumar R, Krishnamurthy B, Bhatia J, Kumari S, et al. Syzygium cumini ameliorates insulin resistance and β-cell dysfunction via modulation of PPAR, dyslipidemia, oxidative stress, and TNF-α in type 2 diabetic rats. J Pharmacol Sci. 2012;3:205–13.

    Article  Google Scholar 

  13. Watanabe K, Petro B, Shlimon A, Unterman T. Effect of periodontitis on insulin resistance and the onset of type 2 diabetes mellitus in Zucker diabetic fatty rats. J Periodontol. 2008;7:1208–16.

    Article  Google Scholar 

  14. Pacios S, Kang J, Galicia J, Gluck K, Patel H, Ovaydi-Mandel A, et al. Diabetes aggravates periodontitis by limiting repair through enhanced inflammation. FASEB J. 2012;4:1423–30.

    Article  Google Scholar 

  15. Hopfer U. Sorting out noncanonical, paracrine functions of vitamin D: focus on “Vitamin D receptor activation and downregulation of renin-angiotensin system attenuate morphine-induced T cell apoptosis”. Am J Physiol Cell Physiol. 2012;303:C592–4.

    Article  CAS  PubMed  Google Scholar 

  16. Mercer K, Wynne R, Lazarenko O, Lumpkin C, Hogue W, Suva L, et al. Vitamin D supplementation protects against bone loss associated with chronic alcohol administration in female mice. J Pharmacol Exp Ther. 2012;343:401–12.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou X, Han J, Song Y, Zhang J, Wang Z. Serum levels of 25-hydroxyvitamin D, oral health and chronic obstructive pulmonary disease. J Clin Periodontol. 2012;39:350–6.

    Article  PubMed  Google Scholar 

  18. Filippella M, Faggiano A, Falchetti A, Colao A, Rosa C, Poti C, et al. Risk of fractures and bone abnormalities in postmenopausal women with type 2 diabetes mellitus. Clin Cases Miner Bone Metab. 2010;7:126–9.

    PubMed  Google Scholar 

  19. Geng S, Zhou S, Glowacki J. Effects of 25-hydroxyvitamin D(3) on proliferation and osteoblast differentiation of human marrow stromal cells require CYP27B1/1α-hydroxylase. J Bone Miner Res. 2011;26:1145–53.

    Article  CAS  PubMed  Google Scholar 

  20. Brownfield LA, Weltman R. Ridge preservation with or without an osteoinductive allograft: a clinical, radiographic, micro-computed tomography, and histologic study evaluating dimensional changes and new bone formation of the alveolar ridge. J Periodontol. 2012;83:581–9.

    Article  PubMed  Google Scholar 

  21. Chang P, Chung M, Wang Y, Chien L, Lim J, Liang K, et al. Patterns of diabetic periodontal wound repair: a study using micro-computed tomography and immunohistochemistry. J Periodontol. 2012;83:644–52.

    Article  PubMed  Google Scholar 

  22. Shive M, Anderson J. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.

    Article  PubMed  Google Scholar 

  23. Kobayashi D, Tsubuku S, Yamanaka H, Asano M, Miyajima M, Yoshida M. In vivo characteristics of injectable poly(dl-lactic acid) microspheres for long-acting drug delivery. Drug Dev Ind Pharm. 1998;24:819–25.

    Article  CAS  PubMed  Google Scholar 

  24. Chung T, Huang Y, Liu Y. Effects of the rate of solvent evaporation on the characteristics of drug loaded PLLA and PDLLA microspheres. Int J Pharm. 2001;212:161–9.

    Google Scholar 

  25. Patomchaiviwat V, Paeratakul O, Kulvanich P. Formation of inhalable rifampicin-poly(l-lactide) microparticles by supercritical anti-solvent process. AAPS PharmSciTech. 2008;9:1119–29.

    Article  CAS  PubMed  Google Scholar 

  26. Park S, Jeon Y, Haam S, Park H, Kim W. Preparation of chitosan microspheres using membrane emulsification and its size modelling. J Microencapsul. 2004;21:539–52.

    Article  CAS  PubMed  Google Scholar 

  27. Quenelle D, Staas J, Winchester G, Barrow E, Barrow W. Efficacy of microencapsulated rifampin in Mycobacterium tuberculosis-infected mice. Antimicrob Agents Chemother. 1999;43:1144–51.

    CAS  PubMed  Google Scholar 

  28. Barrow E, Winchester G, Staas J, Quenelle D, Barrow W. Use of microsphere technology for targeted delivery of rifampin to Mycobacterium tuberculosis-infected macrophages. Antimicrob Agents Chemother. 1998;42:2682–9.

    CAS  PubMed  Google Scholar 

  29. Khaled K, Sarhan H, Ibrahim M, Ali A, Naguib Y. Prednisolone-loaded PLGA microspheres. In vitro characterization and in vivo application in adjuvant-induced arthritis in mice. AAPS PharmSciTech. 2010;11:859–69.

    Article  CAS  PubMed  Google Scholar 

  30. Kim K, Dean D, Wallace J, Breithaupt R, Mikos A, Fisher J. The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials. 2011;32:3750–63.

    Article  CAS  PubMed  Google Scholar 

  31. Giacaman R, Asrani A, Ross K, Herzberg M. Cleavage of protease-activated receptors on an immortalized oral epithelial cell line by Porphyromonas gingivalis gingipains. Microbiology. 2009;155:3238–46.

    Article  CAS  PubMed  Google Scholar 

  32. Kang J, de Brito Bezerra B, Pacios S, Andriankaja O, Li Y, Tsiagbe V, et al. Aggregatibacter actinomycetemcomitans infection enhances apoptosis in vivo through a caspase-3-dependent mechanism in experimental periodontitis. Infect Immun. 2012;6:2247–56.

    Article  Google Scholar 

  33. Xu H, Zhong H, Liu M, Xu C, Gao Y. Lappaconitine-loaded microspheres for parenteral sustained release: effects of formulation variables and in vitro characterization. Pharmazie. 2011;66:654–61.

    CAS  PubMed  Google Scholar 

  34. Cui F, Cun D, Tao A, Yang M, Shi K, Zhao M, et al. Preparation and characterization of melittin-loaded poly(dl-lactic acid) or poly (dl-lactic-co-glycolic acid) microspheres made by the double emulsion method. J Control Release. 2005;107:310–9.

    Article  CAS  PubMed  Google Scholar 

  35. ElMeshad A, Tadros M. Transdermal delivery of an anti-cancer drug via w/o emulsions based on alkyl polyglycosides and lecithin: design, characterization, and in vivo evaluation of the possible irritation potential in rats. AAPS PharmSciTech. 2011;12:1–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ford Versypt A, Pack D, Braatz R. Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres—a review. J Control Release. 2013;165:29–37.

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Ooi C. Hydrolytic degradation and drug release properties of ganciclovir-loaded biodegradable microspheres. Acta Biomater. 2008;4:1046–56.

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Deng X, Yuan M, Xiong C, Huang Z, Zhang Y, et al. In vitro degradation and release profiles of poly-dl-lactide–poly(ethyleneglycol) microspheres with entrapped proteins. J Appl Polym Sci. 2000;78:140–8.

    Article  CAS  Google Scholar 

  39. Hosogi Y, Duncan M. Gene expression in Porphyromonas gingivalis after contact with human epithelial cells. Infect Immun. 2005;73:2327–35.

    Article  CAS  PubMed  Google Scholar 

  40. Yang L, Wang J, Fan Y, Chen S, Wang L, Ma J. Effect of 1,25(OH)(2)D(3) on rat peritoneal mesothelial cells treated with high glucose plus lipopolysaccharide. Cell Immunol. 2011;271:173–9.

    Article  CAS  PubMed  Google Scholar 

  41. Peng X, Vaishnav A, Murillo G, Alimirah F, Torres K, Mehta R. Protection against cellular stress by 25-hydroxyvitamin D3 in breast epithelial cells. J Cell Biochem. 2010;110:1324–33.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang W, Zhao S, Li Y, Peng G, Han P. Acute blood glucose fluctuation induces myocardial apoptosis through oxidative stress and nuclear factor-ĸB activation. Cardiology. 2012;124:11–7.

    Article  PubMed  Google Scholar 

  43. Li H, Xie H, Fu M, Li W, Guo B, Ding Y, et al. 25-Hydroxyvitamin D(3) ameliorates periodontitis by modulating the expression of inflammation-associated factors in diabetic mice. Steroids. 2012;78:115–20.

    Article  PubMed  Google Scholar 

  44. von Hurst P, Stonehouse W, Coad J. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient—a randomised, placebo-controlled trial. Br J Nutr. 2010;103:549–55.

    Article  Google Scholar 

  45. Branco-de-Almeida L, Franco G, Castro M, Dos Santos J, Anbinder A, Cortelli S, et al. Fluoxetine inhibits inflammatory response and bone loss in a rat model of ligature-induced periodontitis. J Periodontol. 2012;83:664–71.

    Article  CAS  PubMed  Google Scholar 

  46. Yiu Y, Yiu K, Siu C, Chan Y, Li S, Wong L, et al. Randomized controlled trial of vitamin D supplement on endothelial function in patients with type 2 diabetes. Atherosclerosis. 2013;227:140–6.

    Article  CAS  PubMed  Google Scholar 

  47. Dörr J, Ohlraun S, Skarabis H, Paul F. Efficacy of vitamin D supplementation in multiple sclerosis (EVIDIMS Trial): study protocol for a randomized controlled trial. Trials. 2012;13:15.

    Article  PubMed  Google Scholar 

  48. Van der Velden U, Kuzmanova D, Chapple I. Micronutritional approaches to periodontal therapy. J Clin Periodontol. 2011; 38(Suppl 11):142–58.

    Google Scholar 

  49. Garcia M, Hildebolt C, Miley D, Dixon D, Couture R, Spearie C, et al. One-year effects of vitamin D and calcium supplementation on chronic periodontitis. J Periodontol. 2011;82:25–32.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was funded by grants from the National Natural Science Foundation of China (81200794) and the Science and Technology Foundation of Sichuan Province (2012SZ0144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Additional information

Hao Li and Qi Wang contributed equally to this work as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Wang, Q., Xiao, Y. et al. 25-Hydroxyvitamin D3-Loaded PLA Microspheres: In Vitro Characterization and Application in Diabetic Periodontitis Models. AAPS PharmSciTech 14, 880–889 (2013). https://doi.org/10.1208/s12249-013-9978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9978-5

KEY WORDS

Navigation