Skip to main content
Log in

Highly Sensitive Spectrofluorimetric Method for Determination of Certain Aminoglycosides in Pharmaceutical Formulations and Human Plasma

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

A simple, reliable, highly sensitive and selective spectrofluorimetric method has been developed for determination of certain aminoglycosides namely amikacin sulfate, tobramycin, neomycin sulfate, gentamicin sulfate, kanamycin sulfate and streptomycin sulfate. The method is based on the formation of a charge transfer complexes between these drugs and safranin in buffer solution of pH 8. The formed complexes were quantitatively extracted with chloroform under the optimized experimental conditions. These complexes showed an excitation maxima at 519–524 nm and emission maxima at 545–570 nm. The calibration plots were constructed over the range of 4–60 pg mL−1 for amikacin, 4–50 pg mL−1 for gentamicin, neomycin and kanamycin, 4–40 pg mL−1 for streptomycin and 5–50 pg mL−1 for tobramycin. The proposed method was successfully applied to the analysis of the cited drugs in dosage forms. The proposed method was validated according to ICH and USP guidelines with respect to specificity, linearity, accuracy, precision and robustness. The high sensitivity of the proposed method allowed determination of amikacin and gentamicin in spiked and real human plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Wang L, Peng JJ, Liu ZW, He YQ. Resonance Rayleigh-scattering spectral method for the determination of some aminoglycoside antibiotics using CdTe quantum dots as a probe. Luminescence. 2010;25(6):424–30.

    Article  CAS  PubMed  Google Scholar 

  2. Amin AS, Issa YM. Ion-association method for the colorimetric determination of neomycin sulphate in pure and dosage forms. Spectrochim Acta A Mol Biomol Spectrosc. 2003;59(4):663–70.

    Article  CAS  PubMed  Google Scholar 

  3. Kalashnikov VP, Dolotova TM, Mynka AF. Spectrophotometric determination of streptomycin sulfate. Farm Zh (Kiev). 2000;3:61–3.

    Google Scholar 

  4. Jiang H, Liu SP, Hu XL, Yang JD. Colour reaction of pontamine sky blue with aminoglycoside antibiotics and their application in analysis. Fenxi Ceshi Xuebao. 2003;22(3):72–4.

    CAS  Google Scholar 

  5. Jiang H, Liu SP, Hu XL. Color reactions of trypan blue with aminoglycoside antibiotics and their analytical applications. Fenxi Shiyanshi. 2003;22(3):59–61.

    CAS  Google Scholar 

  6. Jiang H, Hu XL, Liu SP, Liu ZF, Zhan HL, Qin ZH. Spectrophotometric determination of several antibiotics in human serum and urine liquid by lanthanum(III)-pontamine sky blue-antibiotics system. Chin J Anal Chem. 2004;32(8):1043–6.

    Google Scholar 

  7. Mitic SS, Sunaric SM, Tosic SB. Determination of streptomycin in a pharmaceutical sample based on its degradation by hydrogen peroxide in the presence of copper(II). Anal Sci. 2006;22(5):753–6.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmad AS, Hoda MDN, Ahmad M, Islam F, Qureshi SZ. A simple and selective kinetic spectrophotometric method for the determination of kanamycin using acetylacetone-formaldehyde reagent in N, N′-dimethylformamide medium. J Anal Chem. 2006;61(9):870–4.

    Article  CAS  Google Scholar 

  9. Sunaric SM, Mitic SS, Miletic GZ, Kostic DA, Trutic NV. Spectrophotometric initial-rate method for determination of neomycin in ophthalmic drops. Chem Anal. 2007;52(5):811–21.

    CAS  Google Scholar 

  10. Li QM, Gao LX. A novel method for the determination of streptomycin using sodium nitroprusside as a chromogenic reagent by spectrophotometry. Anal Lett. 2008;41(14):2595–607.

    Article  CAS  Google Scholar 

  11. Al-Sabha TN. Spectrophotometric determination of amikacin sulphate via charge transfer complex formation reaction using tetracyanoethylene and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone reagents. Arab J Sci Eng. 2010;35(2A):27–40.

    CAS  Google Scholar 

  12. Mai E. Spectrofluorimetric method for the determination of amikacin. Zhongguo Yaoxue Zazhi. 1990;25(10):597–9.

    Google Scholar 

  13. Meng L, Wang A, Li L, Zhang J. Spectrofluorimetric method for amikacin. Zhongguo Yaoxue Zazhi. 1993;28(7):417–8.

    CAS  Google Scholar 

  14. Rizk M, ElShabrawy Y, Zakhari NA, Toubar SS, Carreira LA. Fluorimetric determination of aminoglycoside antibiotics using lanthanide probe ion spectroscopy. Talanta. 1995;42(12):1849–56.

    Article  CAS  PubMed  Google Scholar 

  15. Gilmartin MR, McLaren J, Schacht J. Confounding factors in lanthanide ion probe spectrofluorimetric assay of aminoglycoside antibiotics. Anal Biochem. 2000;283(1):116–9.

    Article  CAS  PubMed  Google Scholar 

  16. Belal F, El-Ashry SM, El Kerdawy MM, El Wasseef DR. Spectrofluorimetric determination of streptomycin in dosage forms and in spiked plasma using 9,10-phenanthraquinone. J Pharm Biomed Anal. 2001;26(3):435–41.

    Article  CAS  PubMed  Google Scholar 

  17. El-Shabrawy Y. Fluorimetric determination of aminoglycoside antibiotics in pharmaceutical preparations and biological fluids. Spectrosc Lett. 2002;35(1):99–109.

    Article  CAS  Google Scholar 

  18. Sanchez-Martinez ML, Aguilar-Caballos MP, Gomez-Hens A. Selective kinetic determination of amikacin in serum using long-wavelength fluorimetry. J Pharm Biomed Anal. 2004;34(5):1021–7.

    Article  CAS  PubMed  Google Scholar 

  19. Koerner PJ, Nieman TA. Luminol chemiluminescence HPLC reaction detector for amino-acids and other ligands. Microchim Acta. 1987;II(1–3):79–90.

    Google Scholar 

  20. Deng A, Yang X, Yang Y, Yang H. Study on determination of gentamycin by enhanced chemiluminescent immunoassay. Hua Xi Yi Ke Da Xue Xue Bao. 1993;24(1):101–3.

    CAS  PubMed  Google Scholar 

  21. Halvatzis SA, Mihalatos AM, Palilis LP, Calokerinos AC. Continuous-flow chemiluminometric determination of Amiloride and streptomycin by oxidation with N-bromosuccinimide. Anal Chim Acta. 1994;290(1–2):172–8.

    Article  CAS  Google Scholar 

  22. Yang X, Wu L, Deng A, Zhang J, Zhu L. Study on determination of gentamycin in serum by enhanced chemiluminesent immunoassay based on immobilized antibody and biotin-avidin system. Hua Xi Yi Ke Da Xue Xue Bao. 1995;26(2):234–6.

    CAS  PubMed  Google Scholar 

  23. Yang CY, Zhang ZJ, Wang JL. New luminol chemiluminescence reaction using diperiodatoargentate as oxidate for the determination of amikacin sulfate. Luminescence. 2010;25(1):36–42.

    CAS  PubMed  Google Scholar 

  24. Szabo A, Erdelyi B, Salat J, Mate G. Densitometric determination of some bioactive guanidinium compounds without post-derivatization. Jpc J Planar Chromatogr Mod Tlc. 2005;18(103):203–6.

    Article  CAS  Google Scholar 

  25. Hubicka U, Krzek J, Woltynska H, Stachacz B. Simultaneous identification and quantitative determination of selected aminoglycoside antibiotics by thin-layer chromatography and densitometry. J AOAC Int. 2009;92(4):1068–75.

    CAS  PubMed  Google Scholar 

  26. Kaya SE, Filazi A. Determination of antibiotic residues in milk samples. Kafkas Univ Vet Fak Derg. 2010;16:S31–5.

    Google Scholar 

  27. Lin YF, Wang YC, Chang SY. Capillary electrophoresis of aminoglycosides with argon-ion laser-induced fluorescence detection. J Chromatogr A. 2008;1188(2):331–3.

    Article  CAS  PubMed  Google Scholar 

  28. Huidobro AL, Garcia A, Barbas C. Rapid analytical procedure for neomycin determination in ointments by CE with direct UV detection. J Pharm Biomed Anal. 2009;49(5):1303–7.

    Article  CAS  PubMed  Google Scholar 

  29. Yu CZ, He YZ, Fu GN, Xie HY, Gan WE. Determination of kanamycin A, amikacin and tobramycin residues in milk by capillary zone electrophoresis with post-column derivatization and laser-induced fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877(3):333–8.

    Article  CAS  Google Scholar 

  30. Kajita H, Akutsu C, Hatakeyama E, Komukai T. Simultaneous determination of aminoglycoside antibiotics in milk by liquid chromatography with tandem mass spectrometry. J Food Hyg Soc Jpn. 2008;49(3):189–95.

    Article  CAS  Google Scholar 

  31. Turnipseed SB, Clark SB, Karbiwnyk CM, Andersen WC, Miller KE, Madson MR. Analysis of aminoglycoside residues in bovine milk by liquid chromatography electrospray ion trap mass spectrometry after derivatization with phenyl isocyanate. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877(14–15):1487–93.

    Article  CAS  Google Scholar 

  32. Clarot I, Storme-Paris I, Chaminade P, Estevenon O, Nicolas A, Rieutord A. Simultaneous quantitation of tobramycin and colistin sulphate by HPLC with evaporative light scattering detection. J Pharm Biomed Anal. 2009;50(1):64–7.

    Article  CAS  PubMed  Google Scholar 

  33. Bohm DA, Stachel CS, Gowik P. Confirmatory method for the determination of streptomycin in apples by LC-MS/MS. Anal Chim Acta. 2010;672(1–2):103–6.

    Article  CAS  PubMed  Google Scholar 

  34. Gremilogianni AM, Megoulas NC, Koupparis MA. Hydrophilic interaction vs ion pair liquid chromatography for the determination of streptomycin and dihydrostreptomycin residues in milk based on mass spectrometric detection. J Chromatogr A. 2010;1217(43):6646–51.

    Article  CAS  PubMed  Google Scholar 

  35. Ayad MM, Yousef M. D.c. polarographic determination of certain aminoglycosides. Analyst (London). 1985;110(8):963–5.

    Article  CAS  Google Scholar 

  36. Liang Y, Zhang T. Quantitative determination of streptomycin by first-derivative high-speed pulse polarography. Zhongguo Kangshengsu Zazhi. 1991;16(2):102–5.

    CAS  Google Scholar 

  37. Corti P, Savini L, Dreassi E, Ceramelli G, Montecchi L, Lonardi S. Application of NIRS [near-infra-red reflectance spectrometry] to the control of pharmaceuticals identification and assay of several primary materials. Pharm Acta Helv. 1992;69(2):57–61.

    Google Scholar 

  38. Sanchez-Martinez ML, Aguilar-Caballos MP, Gomez-Hens A. Long-wavelength fluorescence polarization immunoassay: determination of amikacin on solid surface and gliadins in solution. Anal Chem. 2007;79(19):7424–30.

    Article  CAS  PubMed  Google Scholar 

  39. Sánchez-Martínez ML, Aguilar-Caballos MP, Gómez-Hens A. Long wavelength homogeneous enzyme immunoassay for the determination of amikacin in water samples. Talanta. 2009;78(1):305–9.

    Article  PubMed  Google Scholar 

  40. Stahl GL, Kratzer DD. Microbiological determination of neomycin in feeds and formulated products. J Assoc Off Anal Chem. 1984;67(5):863–5.

    CAS  PubMed  Google Scholar 

  41. Stahl GL, Dalkratzer D, Kasson CW. Microbiological determination of neomycin in feeds—collaborative study. J Assoc Off Anal Chem. 1989;72(2):237–41.

    CAS  PubMed  Google Scholar 

  42. Yamamoto CH, Pinto TJA. Rapid determination of neomycin by a microbiological agar diffusion assay using triphenyltetrazolium chloride. J AOAC Int. 1996;79(2):434–40.

    CAS  PubMed  Google Scholar 

  43. Pesez M, Bartos J. Colorimetric and fluorimetric analysis of organic compounds and drugs. New York: Marcel Dekker Inc.; 1974, pp. 170–178 and 628.

  44. The United States Pharcopoeia XXVIIII and NF XXV. Washington, DC: American Pharmaceutical Association; 2007, Electronic version.

  45. Moffat AC, Osselton MD, Widdop B. Clarke’s analysis of drugs and poisons. 3rd ed. London: Pharmaceutical Press; 2004. Electronic version.

    Google Scholar 

  46. Job P. Advanced physicochemical experiments. 2nd ed. Edinburgh: Oliner and Boyd; 1964. p. 54, Ann Chem, 16, 97 (1936).

  47. ICH Harmonized Tripartite Guideline Q2A. Text on validation of analytical procedures. (available at http://www.ich.org): Incorporated in November 2005.

  48. ICH Harmonized Tripartite Guideline Q2B (R1). Validation of analytical procedures: text and methodology. (available at http://www.ich.org): Incorporated in November 2005.

  49. Gupta VD, Stewart KR, Gunter JM. Quantitation of amikacin, kanamycin, neomycin, and tobramycin in pharmaceutical dosage forms using the Hantzsch reaction. J Pharm Sci. 1983;72(12):1470–1.

    Article  CAS  PubMed  Google Scholar 

  50. Sampath SS, Robinson DH. Comparison of new and existing spectrophotometric methods for the analysis of tobramycin and other aminoglycosides. J Pharm Sci. 1990;79(5):428–31.

    Article  CAS  PubMed  Google Scholar 

  51. Aman T, Rashid A, Kulsoom R, Khokhar I. Spectrophotometric determination of streptomycin. Anal Lett. 1995;28(5):881–92.

    Article  CAS  Google Scholar 

  52. Robert EN. Biopharmaceutics and clinical pharmacokinetics, 4th ed. New York: Marcel Dekker Inc.; 1987, p. 305.

  53. Omar MA, Abdelmageed OH, Attia TZ. Kinetic spectrofluorimetric determination of certain cephalosporins in human plasma. Talanta. 2009;77(4):1394–404.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Omar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omar, M.A., Nagy, D.M., Hammad, M.A. et al. Highly Sensitive Spectrofluorimetric Method for Determination of Certain Aminoglycosides in Pharmaceutical Formulations and Human Plasma. AAPS PharmSciTech 14, 828–837 (2013). https://doi.org/10.1208/s12249-013-9969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9969-6

Key words

Navigation