Skip to main content

Advertisement

Log in

Effect of Acetate and Carbonate Buffers on the Photolysis of Riboflavin in Aqueous Solution: A Kinetic Study

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The photolysis of riboflavin (RF) in the presence of acetate buffer (pH 3.8–5.6) and carbonate buffer (pH 9.2–10.8) has been studied using a multicomponent spectrophotometric method for the simultaneous assay of RF and its photoproducts. Acetate and carbonate buffers have been found to catalyze the photolysis reaction of RF. The apparent first-order rate constants for the acetate-catalyzed reaction range from 0.20 to 2.86 × 10−4 s−1 and for the carbonate-catalyzed reaction from 3.33 to 15.89 × 10−4 s−1. The second-order rate constants for the interaction of RF with the acetate and the carbonate ions range from 2.04 to 4.33 × 10−4 M−1 s−1 and from 3.71 to 11.80 × 10−4 M−1 s−1, respectively. The k-pH profile for the acetate-catalyzed reaction is bell shaped and for the carbonate-catalyzed reaction a steep curve. Both HCO 3 and CO 2 −3 ions are involved in the catalysis of the photolysis reaction in alkaline solution. The rate constants for the HCO 3 and CO 2 −3 ions catalyzed reactions are 0.72 and 1.38 × 10−3 M−1 s−1, respectively, indicating a major role of CO 2 −3 ions in the catalysis reaction. The loss of RF fluorescence in acetate buffer suggests an interaction between RF and acetate ions to promote the photolysis reaction. The optimum stability of RF solutions is observed in the pH range 5–6, which is suitable for pharmaceutical preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lachman L, DeLuca P, Askers MJ. Kinetic principles and stability testing. In: Lachman L, Lieberman HA, Kanig JL, editors. The theory and practice of industrial pharmacy. 2nd ed. Philadelphia: Lea & Febiger; 1986. p. 760–803.

    Google Scholar 

  2. Connors KA, Amidon GL, Stella VJ. Chemical stability of pharmaceuticals a handbook for the pharmacist. 2nd ed. New York: Wiley; 1986.

    Google Scholar 

  3. Laidler KJ. Chemical kinetics. 3rd ed. New York: Harper & Row; 1987. p. 384–99.

    Google Scholar 

  4. Carstensen JT. Catalysis, complexation and photolysis. In: Carstensen JT, Rhodes CT, editors. Drug stability principles and practices. 3rd ed. New York: Marcel Dekker; 2000. p. 73–84.

    Google Scholar 

  5. Yoshioka S, Stella VJ. Stability of drugs and dosage forms. New York: Klumer Academic/Plenuim Publisher; 2000. p. 97–9.

    Google Scholar 

  6. Florence AT, Attwood D. Drug stability. In: Physiochemical principles of pharmacy. 4th ed. London: Pharmaceutical Press; 2006. p. 93–138.

  7. Sinko PJ. Chemical kinetics and stability. In: Martin’s physical pharmacy and pharmaceutical sciences. 5th ed. Philadelphia, PA: Lippincott Willams & Wilkins, 2006, p. 416–20.

  8. British Pharmacopoeia, London: Her Majesty’s Stationary Office; 2012, Electronic version.

  9. United States Pharmacopoeia, 30-National Formulary 25. Rockville, MD: United States Pharmacopoeial Convention, Inc., 2013. Electronic version.

  10. Ahmad I, Fasiullah Q, Noor A, Ansari IA, Ali QNM. Photolysis of riboflavin in aqueous solution: a kinetic study. Int J Pharm. 2004;280:199–208.

    Article  CAS  PubMed  Google Scholar 

  11. Halwer M. The photochemistry of riboflavin and related compounds. J Am Chem Soc. 1951;73:4870–4.

    Article  CAS  Google Scholar 

  12. Holmstrom B, Oster G. Riboflavin as an electron donor in photochemical reactions. J Am Chem Soc. 1961;83:1867–71.

    Article  CAS  Google Scholar 

  13. Schuman Jorns M, Sehollnhammer G, Hemmerich P. Intramolecular addition of the riboflavin side chain. Anion-catalyzed neutral photochemistry. Eur J Biochem. 1975;57:35–48.

    Article  CAS  PubMed  Google Scholar 

  14. Ahmad I, Fasihullah Q, Vaid FHM. A study of simultaneous photolysis and photoaddition reactions of riboflavin in aqueous solution. J Photochem Photobiol B Biol. 2004;75:13–20.

    Article  CAS  Google Scholar 

  15. Ahmad I, Fasihullah Q, Vaid FHM. Effect of phosphate buffer on photodegradation reactions of riboflavin in aqueous solution. J Photochem Photobiol B Biol. 2005;78:229–34.

    Article  CAS  Google Scholar 

  16. Ahmad I, Fasihullah Q, Vaid FHM. Effect of light intensity and wavelength on photodegradation reactions riboflavin in aqueous solution. J Photochem Photobiol B Biol. 2006;82:21–7.

    Article  CAS  Google Scholar 

  17. Ahmad I, Vaid FHM. Photochemistry of flavins in aqueous and organic solvents. In: Silva E, Edwards AM, editors. Flavins photochemistry and photobiology. Cambridge: Royal Society of Chemistry; 2006. p. 13–40.

    Google Scholar 

  18. Ahmad I, Ahmed S, Sheraz MA, Vaid FHM, Ansari IA. Effect of divalent anions on photodegradation kinetics and pathways of riboflavin in aqueous solution. Int J Pharm. 2010;390:174–82.

    Article  CAS  PubMed  Google Scholar 

  19. Ahmad I, Ahmed S, Sheraz MA, Vaid FHM. Effect of borate buffer on the photolysis of riboflavin in aqueous solution. J Photochem Photobiol B Biol. 2008;93:82–7.

    Article  CAS  Google Scholar 

  20. Ahmad I, Sheraz MA, Ahmed S, Hafeez SK, Mirza T, Aminuddin M. Stabilizing effect of citrate buffer on the photolysis of riboflavin in aqueous solution. Result Pharma Sci. 2011;1:11–5.

    Article  CAS  Google Scholar 

  21. Hou JP, Poole JW. Lactam antibiotics: their physicochemical properties and biological activities in relation to structure. J Pharm Sci. 1971;60:503–32.

    Article  CAS  PubMed  Google Scholar 

  22. Wood RW. Carbenicillin monograph. In: Connors CA, Amidon GL, Stella VJ, editors. Chemical stability of pharmaceuticals: a handbook for pharmacist. 2nd ed. New York: Wiley; 1986. p. 290–4.

    Google Scholar 

  23. Fabre H, Eddine NH, Berge G. Degradation kinetics in aqueous solution of cefotaxime sodium, a third-generation cephalosporin. J Pharm Sci. 1984;73:611–8.

    Article  CAS  PubMed  Google Scholar 

  24. Hajratwala BR. Kinetics of sulfite-induced anaerobic degradation of epinephrine. J Pharm Sci. 1975;64:45–8.

    Article  CAS  PubMed  Google Scholar 

  25. Hansen J, Kreilgard B, Nielsen, Veje J. Kinetics of degradation of methotrexate in aqueous solution. Int J Pharm. 1983;16:141–52.

    Article  CAS  Google Scholar 

  26. Underberg WJM, Lingeman H. Aspects of the chemical stability of mitomycin and profiromycin in acidic solution. J Pharm Sci. 1983;72:549–53.

    Article  CAS  PubMed  Google Scholar 

  27. Stehle RG, Smith RW. Relative’s aqueous stabilities of dinoprostone free acid (prostaglandin E2) and its carbamomylmethyl ester. J Pharm Sci. 1976;65:1844–5.

    Article  CAS  PubMed  Google Scholar 

  28. Windheuser JJ, Higuchi T. Kinetics of thiamine hydrolysis. J Pharm Sci. 1962;51:354–64.

    Article  CAS  PubMed  Google Scholar 

  29. Pertzer D. Cis-platin monograph. In: Connors CA, Amidon GL, Stella VJ, editors. Chemical stability of pharmaceuticals: a handbook for pharmacist. 2nd ed. New York: Wiley; 1986. p. 356–64.

    Google Scholar 

  30. Reid JM. Cyclophosphamide monograph. In: Connors CA, Amidon GL, Stella VJ, editors. Chemical stability of pharmaceuticals: a handbook for pharmacist. 2nd ed. New York: Wiley; 1986. p. 385–93.

    Google Scholar 

  31. Konorev EA, Zhang A, Joseph J, Kennedy MC, Kalyanaraman B. Bicarbonate exacerbates oxidative injury induced by antitumor antibiotic doxorubicin in cardiomyocytes. AJP-Heart. 2000;279:2424–30.

    Google Scholar 

  32. Fall HH, Petering HG. Metabolic inhibitors.1. 6,7-dimethyl-9-formylmethylisoalloxazine, 6,7-dimethyl-9-(12-hydroxyethyl)-isoalloxazine and derivatives. J Am Chem Soc. 1956;78:377–81.

    Article  CAS  Google Scholar 

  33. Fukumachi C, Sakurai Y. Vitamin B2 photolysis. V. The photolytic formation of 6, 7-dimethylflavin-9-acetic acid ester from riboflavin. Vitamins (Kyoto). 1954;7:939–43.

    CAS  Google Scholar 

  34. Ahmad I, Rapson HDC, Heelis PF, Phillips GO. Alkaline hydrolysis of 7, 8-dimethyl-10(formylmethyl)-isoalloxazine. A kinetic study. J Org Chem. 1980;45:31–3.

    Article  Google Scholar 

  35. Hatchard CG, Parker CA. A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical antinometer. Proc Roy Soc (Lond). 1956;A 235:518–36.

    Article  Google Scholar 

  36. Ahmad I, Rapson HDC. Multicomponent spectrophotometeric assay of riboflavin and photoproducts. J Pharm Biomed Anal. 1990;8:217–23.

    Article  CAS  PubMed  Google Scholar 

  37. Suelter CH, Metzler DE. The oxidation of a reduced pyridine nucleotide analog by flavins. Biochem Biophys Acta. 1960;44:22–3.

    Article  Google Scholar 

  38. Ahmad I, Fasihullah Q, Vaid FHM. Photolysis of formylmethylflavin in aqueous and organic solvents. Photochem Photobiol Sci. 2006;5:680–5.

    Article  CAS  PubMed  Google Scholar 

  39. Ahmad I, Mirza T, Iqbal K, Ahmed S, Sheraz MA, Vaid FHM. Effect of pH, buffer and viscosity on the photolysis of formylmethylflavin: a kinetic study. Aust J Chem. 2013;66:579–85.

    CAS  Google Scholar 

  40. Song PS, Metzler DE. Photochemical degradation of flavins. IV. Studies of the anaerobic photolysis of riboflavin. Photochem Photobiol. 1967;6:691–709.

    Article  CAS  PubMed  Google Scholar 

  41. Farrer KTH, Macewan JL. The thermal destruction of riboflavin. Aust J Biol Sci. 1954;7:73–84.

    CAS  PubMed  Google Scholar 

  42. Harkness DR, Stadman ER. Bacterial degradation of riboflavin. J Biol Chem. 1965;240:4089–96.

    CAS  PubMed  Google Scholar 

  43. Ahmad I, Ahmed S, Sheraz MA, Aminuddin M, Vaid FHM. Effect of caffeine complexation on the photolysis of riboflavin in aqueous solution: a kinetic study. Chem Pharm Bull. 2009;57:1363–70.

    Article  CAS  PubMed  Google Scholar 

  44. Cairns WL, Metzler DE. Photochemical degradation of flavins. VI. A new photoproduct and its use in studying the photolytic mechanism. J Am Chem Soc. 1971;93:2772–7.

    Article  CAS  PubMed  Google Scholar 

  45. Heelis PF, Phillips GO, Ahmad I, Rapson HDC. The photodegradation of formylmethylflavin—a steady state and laser flash photolysis study. Photochem Photobiophys. 1980;1:125–30.

    CAS  Google Scholar 

  46. Rodiguin NM, Rodiguina EN. Consecutive chemical reactions. Princelin: Van Nostand Co., Inc; 1964. p. 84–96.

    Google Scholar 

  47. O’Neil MJ, editor. The Merck Index. 15th ed. Cambridge, UK: The Royal Society of Chemistry; 2013. Electronic Version.

  48. Moore WM, Spence JT, Raymond FA, Colson SD. Photochemistry of riboflavin. I. The hydrogen transfer process in the anaerobic photobleaching of flavins. J Am Chem Soc. 1963;85:3367–72.

    Article  CAS  Google Scholar 

  49. Smith EC, Metzler DE. The photochemical degradation of riboflavin. J Am Chem Soc. 1963;85:3285–8.

    Article  CAS  Google Scholar 

  50. Clark WM. Oxidation-reduction potentials of organic systems. Baltimore: Williams & Wilkins; 1960. p. 442.

    Google Scholar 

  51. Mayhew SG. The effects of pH and semiquinone formation on the oxidation-reduction potentials of flavin mononucleotide. A reappraisal. Eur J Biochem. 1999;265:698–702.

    Article  CAS  PubMed  Google Scholar 

  52. Wells JI. Pharmaceutical formulation: the physicochemical properties of drug substances. New York: Wiley; 1988. p. 171.

    Google Scholar 

  53. Albert A, Serjent EP. Ionization constants of acids and bases. A laboratory mannual. London: Methuen & Co; 1962. p. 151.

    Google Scholar 

  54. Weber G. Fluorescence of riboflavin and flavin adenine dinucleotide. Biochem J. 1950;47:114–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Heelis PF. The photophysical and photochemical properties of flavins (isoalloxazines). Chem Soc Rev. 1982;11:15–39.

    Article  CAS  Google Scholar 

  56. Drossler P, Holzer W, Penzkoffer A, Hegemann P. Fluorescence quenching of aqueous solutions of riboflavin by methionin and cystein. Chim Phys. 2003;286:409.

    Article  CAS  Google Scholar 

  57. Song PS. Chemistry of flavins in their excited states. In: Kamin H, editor. Flavins and flavoproteins. Baltimore: University Park Press; 1971. p. 37–61.

    Google Scholar 

  58. Heelis PF. The photochemistry of flavins. In: Muller F, editor. Chemistry and biochemistry of flavoenzymes, vol. 1. Boca Raton, FL: CRC Press; 1991. p. 171–93.

    Google Scholar 

  59. Gladys M, Knappe WR. Photochemie des (Iso) alloxazins III. Intramolekulare photodealkylierung von 10-alkylisoalloxazinen, eine mofellreaktion fur den riboflavin-photoabbau. Chem Ber. 1974;107:3658–73.

    Article  CAS  Google Scholar 

  60. Knappe WR. Photochemie des (Iso) Alloxazins IV. Dealkylierung und decarboxylierung kurzkettiger isoalloxazin-10-alkancarbonsauren. Chem Ber. 1975;108:2422–38.

    Article  CAS  Google Scholar 

  61. Sheraz MA, Kazi SH, Ahmad S, Mirza T, Ahmad I, Evstigneev MP. Effect of phosphate buffer on the complexation and photochemical interaction of riboflavin and caffeine in aqueous solution: a kinetic study. J Photochem Photobiol A Chem. 2014;273:17–22.

    Article  CAS  Google Scholar 

  62. Ahmad I, Tollin G. Flavin triplet quenching and semiquinone formation by aliphatic α-substituted acetic acids: intermediates in flavin-sensitized photodecarboxylation. Photochem Photobiol. 1981;34:441–5.

    Article  CAS  Google Scholar 

  63. Ahmad I, Tollin G. Solvent effects on flavin electron transfer reactions. Biochemistry. 1981;20:5925–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubair Anwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, I., Anwar, Z., Iqbal, K. et al. Effect of Acetate and Carbonate Buffers on the Photolysis of Riboflavin in Aqueous Solution: A Kinetic Study. AAPS PharmSciTech 15, 550–559 (2014). https://doi.org/10.1208/s12249-013-0067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-0067-6

KEY WORDS

Navigation